Alterations in late endocytic trafficking related to the pathobiology of LRRK2-linked Parkinson's disease.
Biochem Soc Trans
; 43(3): 390-5, 2015 Jun.
Article
em En
| MEDLINE
| ID: mdl-26009181
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene comprise the most common cause of familial Parkinson's disease (PD), and variants increase the risk for sporadic PD. LRRK2 displays kinase and GTPase activity, and altered catalytic activity correlates with neurotoxicity, making LRRK2 a promising therapeutic target. Despite the importance of LRRK2 for disease pathogenesis, its normal cellular function, and the mechanism(s) by which pathogenic mutations cause neurodegeneration remain unclear. LRRK2 seems to regulate a variety of intracellular vesicular trafficking events to and from the late endosome in a manner dependent on various Rab proteins. At least some of those events are further regulated by LRRK2 in a manner dependent on two-pore channels (TPCs). TPCs are ionic channels localized to distinct endosomal structures and can cause localized calcium release from those acidic stores, with downstream effects on vesicular trafficking. Here, we review current knowledge about the link between LRRK2, TPC- and Rab-mediated vesicular trafficking to and from the late endosome, highlighting a possible cross-talk between endolysosomal calcium stores and Rab proteins underlying pathomechanism(s) in LRRK2-related PD.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Doença de Parkinson
/
Canais de Cálcio
/
Proteínas Serina-Treonina Quinases
/
Endocitose
/
Degeneração Neural
Limite:
Humans
Idioma:
En
Revista:
Biochem Soc Trans
Ano de publicação:
2015
Tipo de documento:
Article
País de afiliação:
Espanha