Your browser doesn't support javascript.
loading
A Genetic Incompatibility Accelerates Adaptation in Yeast.
Bui, Duyen T; Dine, Elliot; Anderson, James B; Aquadro, Charles F; Alani, Eric E.
Afiliação
  • Bui DT; Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.
  • Dine E; Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.
  • Anderson JB; Department of Biology, University of Toronto, Mississauga, Ontario, Canada.
  • Aquadro CF; Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.
  • Alani EE; Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.
PLoS Genet ; 11(7): e1005407, 2015 Jul.
Article em En | MEDLINE | ID: mdl-26230253
ABSTRACT
During mismatch repair (MMR) MSH proteins bind to mismatches that form as the result of DNA replication errors and recruit MLH factors such as Mlh1-Pms1 to initiate excision and repair steps. Previously, we identified a negative epistatic interaction involving naturally occurring polymorphisms in the MLH1 and PMS1 genes of baker's yeast. Here we hypothesize that a mutagenic state resulting from this negative epistatic interaction increases the likelihood of obtaining beneficial mutations that can promote adaptation to stress conditions. We tested this by stressing yeast strains bearing mutagenic (incompatible) and non-mutagenic (compatible) mismatch repair genotypes. Our data show that incompatible populations adapted more rapidly and without an apparent fitness cost to high salt stress. The fitness advantage of incompatible populations was rapid but disappeared over time. The fitness gains in both compatible and incompatible strains were due primarily to mutations in PMR1 that appeared earlier in incompatible evolving populations. These data demonstrate a rapid and reversible role (by mating) for genetic incompatibilities in accelerating adaptation in eukaryotes. They also provide an approach to link experimental studies to observational population genomics.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas de Transporte / Proteínas de Saccharomyces cerevisiae / Proteínas Adaptadoras de Transdução de Sinal / Reparo de Erro de Pareamento de DNA / Tolerância ao Sal Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas de Transporte / Proteínas de Saccharomyces cerevisiae / Proteínas Adaptadoras de Transdução de Sinal / Reparo de Erro de Pareamento de DNA / Tolerância ao Sal Tipo de estudo: Prognostic_studies Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos