Your browser doesn't support javascript.
loading
Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection.
Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar.
Afiliação
  • Mustafaoglu N; Department of Chemical and Biomolecular Engineering, ‡Department of Chemistry and Biochemistry, §Advanced Diagnostics and Therapeutics, ∥Mike and Josie Harper Cancer Research Institute, and ⊥Center for Rare and Neglected Diseases, University of Notre Dame , Notre Dame, Indiana 46556, United States.
  • Alves NJ; Department of Chemical and Biomolecular Engineering, ‡Department of Chemistry and Biochemistry, §Advanced Diagnostics and Therapeutics, ∥Mike and Josie Harper Cancer Research Institute, and ⊥Center for Rare and Neglected Diseases, University of Notre Dame , Notre Dame, Indiana 46556, United States.
  • Bilgicer B; Department of Chemical and Biomolecular Engineering, ‡Department of Chemistry and Biochemistry, §Advanced Diagnostics and Therapeutics, ∥Mike and Josie Harper Cancer Research Institute, and ⊥Center for Rare and Neglected Diseases, University of Notre Dame , Notre Dame, Indiana 46556, United States.
Langmuir ; 31(35): 9728-36, 2015 Sep 08.
Article em En | MEDLINE | ID: mdl-26273992
ABSTRACT
Oriented immobilization of antibodies and antibody fragments has become increasingly important as a result of the efforts to reduce the size of diagnostic and sensor devices to miniaturized dimensions for improved accessibility to the end-user. Reduced dimensions of sensor devices necessitate the immobilized antibodies to conserve their antigen binding activity for proper operation. Fab fragments are becoming more commonly used in small-scaled diagnostic devices due to their small size and ease of manufacture. In this study, we used the previously described UV-NBS(Biotin) method to functionalize Fab fragments with IBA-EG11-Biotin linker utilizing UV energy to initiate a photo-cross-linking reaction between the nucleotide binding site (NBS) on the Fab fragment and IBA-Biotin molecule. Our results demonstrate that immobilization of biotinylated Fab fragments via UV-NBS(Biotin) method generated the highest level of immobilized Fab on surfaces when compared to other typical immobilization methods while preserving antigen binding activity. UV-NBS(Biotin) method provided 432-fold, 114-fold, and 29-fold improved antigen detection sensitivity than physical adsorption, NHS-Biotin, and ε-NH3(+), methods, respectively. Additionally, the limit of detection (LOD) for PSA utilizing Fab fragments immobilized via UV-NBS(Biotin) method was significantly lower than that of the other immobilization methods, with an LOD of 0.4 pM PSA. In summary, site-specific biotinylation of Fab fragments without structural damage or loss in antigen binding activity provides a wide range of application potential for UV-NBS immobilization technique across numerous diagnostic devices and nanotechnologies.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Fragmentos Fab das Imunoglobulinas / Biotinilação / Anticorpos Imobilizados / Antígenos / Nucleotídeos Tipo de estudo: Diagnostic_studies Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Fragmentos Fab das Imunoglobulinas / Biotinilação / Anticorpos Imobilizados / Antígenos / Nucleotídeos Tipo de estudo: Diagnostic_studies Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos