Stella controls chromocenter formation through regulation of Daxx expression in 2-cell embryos.
Biochem Biophys Res Commun
; 466(1): 60-5, 2015 Oct 09.
Article
em En
| MEDLINE
| ID: mdl-26325466
In mammals, the structure of the pericentromeric region alters from a ring structure to a dot-like structure during the 2-cell stage. This structural alteration is termed chromocenter formation (CF) and is required for preimplantation development. Although reverse transcripts of major satellite repeats at pericentromeric regions are known to play roles in CF, its underlying mechanism is not fully understood. We previously reported that Stella (also known as PGC7 and Dppa3) deficiency led to developmental arrest at the preimplantation stage, accompanied by frequent chromosome segregation. In this study, we further investigated the effect of Stella deficiency on chromatin reorganization. The Stella-null embryos exhibited impaired CF and reduced expression of the reverse strand of major satellite repeats. In addition, the accumulation of H3.3, a histone H3 variant associated with transcriptional activation, at the pericentromeric regions and expression of the H3.3-specific chaperone Daxx were reduced in Stella-null embryos. These abnormalities were restored by the enforced expression of Daxx in Stella-null embryos. Thus, Stella controls the expression of Daxx and ensures chromatin reorganization in early embryos.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Proteínas Repressoras
/
Zigoto
/
Proteínas Nucleares
/
Heterocromatina
/
Proteínas de Transporte
/
Regulação da Expressão Gênica no Desenvolvimento
/
Peptídeos e Proteínas de Sinalização Intracelular
Limite:
Animals
Idioma:
En
Revista:
Biochem Biophys Res Commun
Ano de publicação:
2015
Tipo de documento:
Article
País de afiliação:
Japão