Your browser doesn't support javascript.
loading
Cnga2 Knockout Mice Display Alzheimer's-Like Behavior Abnormities and Pathological Changes.
Xie, Ao-Ji; Liu, En-Jie; Huang, He-Zhou; Hu, Yu; Li, Ke; Lu, Youming; Wang, Jian-Zhi; Zhu, Ling-Qiang.
Afiliação
  • Xie AJ; Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Liu EJ; Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Huang HZ; Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Hu Y; Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Li K; Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Lu Y; Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Wang JZ; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • Zhu LQ; Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Mol Neurobiol ; 53(7): 4992-9, 2016 09.
Article em En | MEDLINE | ID: mdl-26377105
Olfactory dysfunction is recognized as a potential risk factor for Alzheimer's disease (AD). We have reported previously that olfactory deprivation by olfactory bulbectomy (OBX) induced Alzheimer's-like pathological changes and behavioral abnormalities. However, the acute OBX model undergoes surgical-induced brain parenchyma loss and unexpected massive hemorrhage so that it cannot fully mimic the progressive olfactory loss and neurodegeneration in AD. Here, we employed the mice loss of cyclic nucleotide-gated channel alpha 2 (Cnga2) which is critical for olfactory sensory transduction, to investigate the role of olfactory dysfunction in AD pathological process. We found that impaired learning and memory abilities, loss of dendrite spines, as well as decrement of synaptic proteins were displayed in Cnga2 knockout mice. Moreover, Aß overproduction, tau hyperphosphorylation, and somatodendritic translocation were also found in Cnga2 knockout mice. Our findings suggest that progressive olfactory loss leads to Alzheimer's-like behavior abnormities and pathological changes.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Canais de Cátion Regulados por Nucleotídeos Cíclicos / Doença de Alzheimer / Hipocampo Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Mol Neurobiol Assunto da revista: BIOLOGIA MOLECULAR / NEUROLOGIA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Canais de Cátion Regulados por Nucleotídeos Cíclicos / Doença de Alzheimer / Hipocampo Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Mol Neurobiol Assunto da revista: BIOLOGIA MOLECULAR / NEUROLOGIA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China