Size matters--The phototoxicity of TiO2 nanomaterials.
Environ Pollut
; 208(Pt B): 859-67, 2016 Jan.
Article
em En
| MEDLINE
| ID: mdl-26613672
Under solar radiation several titanium dioxide nanoparticles (nano-TiO2) are known to be phototoxic for daphnids. We investigated the influence of primary particle size (10, 25, and 220 nm) and ionic strength (IS) of the test medium on the acute phototoxicity of anatase TiO2 particles to Daphnia magna. The intermediate sized particles (25 nm) showed the highest phototoxicity followed by the 10 nm and 220 nm sized particles (median effective concentrations (EC50): 0.53, 1.28, 3.88 mg/L). Photoactivity was specified by differentiating free OH radicals (therephthalic acid method) and on the other hand surface adsorbed, as well as free OH, electron holes, and O2(-) (electron paramagnetic resonance spectroscopy, EPR). We show that the formation of free OH radicals increased with a decrease in primary particle size (terephthalic acid method), whereas the total measured ROS content was highest at an intermediate particle size of 25 nm, which consequently revealed the highest photoxicity. The photoactivities of the 10 and 220 nm particles as measured by EPR were comparable. We suggest that phototoxicity depends additionally on the particle-daphnia interaction area, which explains the higher photoxicity of the 10 nm particles compared to the 220 nm particles. Thus, phototoxicity is a function of the generation of different ROS and the particle-daphnia interaction area, both depending on particle size. Phototoxicity of the 10 nm and 25 nm sized nanoparticles decreased as IS of the test medium increased (EC50: 2.9 and 1.1 mg/L). In conformity with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory we suggest that the precipitation of nano-TiO2 was more pronounced in high than in low IS medium, causing a lower phototoxicity. In summary, primary particle size and IS of the medium were identified as factors influencing phototoxicity of anatase nano-TiO2 to D. magna.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Tamanho da Partícula
/
Titânio
/
Nanopartículas
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Environ Pollut
Assunto da revista:
SAUDE AMBIENTAL
Ano de publicação:
2016
Tipo de documento:
Article