Your browser doesn't support javascript.
loading
Accommodative movements of the lens/capsule and the strand that extends between the posterior vitreous zonule insertion zone & the lens equator, in relation to the vitreous face and aging.
Croft, Mary Ann; Heatley, Gregg; McDonald, Jared P; Katz, Alexander; Kaufman, Paul L.
Afiliação
  • Croft MA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, USA.
  • Heatley G; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, USA.
  • McDonald JP; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, USA.
  • Katz A; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, USA.
  • Kaufman PL; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, USA.
Ophthalmic Physiol Opt ; 36(1): 21-32, 2016 Jan.
Article em En | MEDLINE | ID: mdl-26769326
ABSTRACT

PURPOSE:

To elucidate the dynamic accommodative movements of the lens capsule, posterior lens and the strand that attaches to the posterior vitreous zonule insertion zone and posterior lens equator (PVZ INS-LE), and their age-related changes.

METHODS:

Twelve human subjects (ages 19-65 years) and 12 rhesus monkeys (ages 6-27 years) were studied. Accommodation was induced pharmacologically (humans) or by central electrical stimulation (monkeys). Ultrasound biomicroscopy was used to image intraocular structures in both species. Surgical procedures and contrast agents were utilized in the monkey eyes to elucidate function and allow visualization of the intraocular accommodative structures.

RESULTS:

Human The posterior pole of the lens moves posteriorly during accommodation in proportion to accommodative amplitude and ciliary muscle movement. Monkey Similar accommodative movements of the posterior lens pole were seen in the monkey eyes. Following extracapsular lens extraction (ECLE), the central capsule bows backward during accommodation in proportion to accommodative amplitude and ciliary muscle movement, while the peripheral capsule moves forward. During accommodation the ciliary muscle moved forward by ~1.0 mm, pulling forward the vitreous zonule and the PVZ INS-LE structure. During the accommodative response the PVZ INS-LE structure moved forward when the lens was intact and when the lens substance and capsule were removed. In both the monkey and the human eyes these movements declined with age.

CONCLUSIONS:

The accommodative shape change of the central capsule may be due to the elastic properties of the capsule itself. For these capsule/lens accommodative posterior movements to occur, the vitreous face must either allow for it or facilitate it. The PVZ INS-LE structure may act as a 'strut' to the posterior lens equator (pushing the lens equator forward) and thereby facilitate accommodative forward lens equator movement and lens thickening. The age-related posterior restriction of the ciliary muscle, vitreous zonule and the PVZ-INS LE structure dampens the accommodative lens shape change. Future descriptions of the accommodative mechanism, and approaches to presbyopia therapy, may need to incorporate these findings.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Presbiopia / Corpo Vítreo / Envelhecimento / Acomodação Ocular / Cápsula do Cristalino / Cristalino Tipo de estudo: Prognostic_studies Limite: Adult / Aged / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Ophthalmic Physiol Opt Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Presbiopia / Corpo Vítreo / Envelhecimento / Acomodação Ocular / Cápsula do Cristalino / Cristalino Tipo de estudo: Prognostic_studies Limite: Adult / Aged / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Ophthalmic Physiol Opt Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos