Your browser doesn't support javascript.
loading
Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease.
Ahmed, I; Greenwood, R; Costello, B; Ratcliffe, N; Probert, C S.
Afiliação
  • Ahmed I; Department of Gastroenterology, University Hospital Southampton, Southampton, UK.
  • Greenwood R; Department of Research and Development, Bristol Royal Infirmary, Bristol, UK.
  • Costello B; Institute of Biosensing Technology, University of the West of England, Bristol, UK.
  • Ratcliffe N; Institute of Biosensing Technology, University of the West of England, Bristol, UK.
  • Probert CS; Gastroenterology Research Unit, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
Aliment Pharmacol Ther ; 43(5): 596-611, 2016 Mar.
Article em En | MEDLINE | ID: mdl-26806034
ABSTRACT

BACKGROUND:

The aetiology of inflammatory bowel disease (IBD) remains poorly understood. Recent evidence suggests an important role of gut microbial dysbiosis in IBD, and this may be associated with changes in faecal volatile organic metabolites (VOMs).

AIM:

To describe the changes in the faecal VOMs of patients with IBD and establish their diagnostic potential as non-invasive biomarkers.

METHODS:

Faecal samples were obtained from 117 people with Crohn's disease (CD), 100 with ulcerative colitis (UC), and 109 healthy controls. Faecal VOMs were extracted using solid-phase micro-extraction and analysed by gas chromatography mass spectrometry. Data analysis was carried out using partial least squares-discriminate analysis (PLS-DA) to determine class membership based on distinct metabolomic profiles.

RESULTS:

The PLS-DA model showed clear separation of active CD from inactive disease and healthy controls (P < 0.001). Heptanal, 1-octen-3-ol, 2-piperidinone and 6-methyl-2-heptanone were up-regulated in the active CD group [variable important in projection (VIP) score 2.8, 2.7, 2.6 and 2.4, respectively], while methanethiol, 3-methyl-phenol, short-chain fatty acids and ester derivatives were found to be less abundant (VIP score of 3.5, 2.6, 1.5 and 1.2, respectively). The PLS-DA model also separated patients with small bowel CD from healthy controls and those with colonic CD from UC (P < 0.001). In contrast, less distinct separation was observed between active UC, inactive UC and healthy controls.

CONCLUSIONS:

Analysis of faecal volatile organic metabolites can provide an understanding of gut metabolomic changes in IBD. It has the potential to provide a non-invasive means of diagnosing IBD, and can differentiate between UC and CD.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Colite Ulcerativa / Doença de Crohn / Compostos Orgânicos Voláteis / Fezes Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Aliment Pharmacol Ther Assunto da revista: FARMACOLOGIA / GASTROENTEROLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Colite Ulcerativa / Doença de Crohn / Compostos Orgânicos Voláteis / Fezes Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Aliment Pharmacol Ther Assunto da revista: FARMACOLOGIA / GASTROENTEROLOGIA / TERAPIA POR MEDICAMENTOS Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Reino Unido