Your browser doesn't support javascript.
loading
Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.
Bennett, Rachel R; Lee, Calvin K; De Anda, Jaime; Nealson, Kenneth H; Yildiz, Fitnat H; O'Toole, George A; Wong, Gerard C L; Golestanian, Ramin.
Afiliação
  • Bennett RR; Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Lee CK; Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095-1600, USA.
  • De Anda J; Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095-1600, USA.
  • Nealson KH; Departments of Earth Sciences and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
  • Yildiz FH; Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA.
  • O'Toole GA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
  • Wong GC; Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095-1600, USA.
  • Golestanian R; Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK ramin.golestanian@physics.ox.ac.uk.
J R Soc Interface ; 13(115): 20150966, 2016 Feb.
Article em En | MEDLINE | ID: mdl-26864892
ABSTRACT
Monotrichous bacteria on surfaces exhibit complex spinning movements. Such spinning motility is often a part of the surface detachment launch sequence of these cells. To understand the impact of spinning motility on bacterial surface interactions, we develop a hydrodynamic model of a surface-bound bacterium, which reproduces behaviours that we observe in Pseudomonas aeruginosa, Shewanella oneidensis and Vibrio cholerae, and provides a detailed dictionary for connecting observed spinning behaviour to bacteria-surface interactions. Our findings indicate that the fraction of the flagellar filament adhered to the surface, the rotation torque of this appendage, the flexibility of the flagellar hook and the shape of the bacterial cell dictate the likelihood that a microbe will detach and the optimum orientation that it should have during detachment. These findings are important for understanding species-specific reversible attachment, the key transition event between the planktonic and biofilm lifestyle for motile, rod-shaped organisms.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Vibrio cholerae / Biofilmes / Shewanella / Flagelos Tipo de estudo: Prognostic_studies Idioma: En Revista: J R Soc Interface Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Pseudomonas aeruginosa / Vibrio cholerae / Biofilmes / Shewanella / Flagelos Tipo de estudo: Prognostic_studies Idioma: En Revista: J R Soc Interface Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos