Your browser doesn't support javascript.
loading
Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower.
Moschen, Sebastián; Higgins, Janet; Di Rienzo, Julio A; Heinz, Ruth A; Paniego, Norma; Fernandez, Paula.
Afiliação
  • Moschen S; Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina.
  • Higgins J; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.
  • Di Rienzo JA; The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
  • Heinz RA; Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina.
  • Paniego N; Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina.
  • Fernandez P; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.
BMC Bioinformatics ; 17 Suppl 5: 174, 2016 Jun 06.
Article em En | MEDLINE | ID: mdl-27295368
BACKGROUND: In recent years, high throughput technologies have led to an increase of datasets from omics disciplines allowing the understanding of the complex regulatory networks associated with biological processes. Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables, which has a strong impact on crop yield. Transcription factors (TFs) are key proteins in the regulation of gene expression, regulating different signaling pathways; their function is crucial for triggering and/or regulating different aspects of the leaf senescence process. The study of TF interactions and their integration with metabolic profiles under different developmental conditions, especially for a non-model organism such as sunflower, will open new insights into the details of gene regulation of leaf senescence. RESULTS: Weighted Gene Correlation Network Analysis (WGCNA) and BioSignature Discoverer (BioSD, Gnosis Data Analysis, Heraklion, Greece) were used to integrate transcriptomic and metabolomic data. WGCNA allowed the detection of 10 metabolites and 13 TFs whereas BioSD allowed the detection of 1 metabolite and 6 TFs as potential biomarkers. The comparative analysis demonstrated that three transcription factors were detected through both methodologies, highlighting them as potentially robust biomarkers associated with leaf senescence in sunflower. CONCLUSIONS: The complementary use of network and BioSignature Discoverer analysis of transcriptomic and metabolomic data provided a useful tool for identifying candidate genes and metabolites which may have a role during the triggering and development of the leaf senescence process. The WGCNA tool allowed us to design and test a hypothetical network in order to infer relationships across selected transcription factor and metabolite candidate biomarkers involved in leaf senescence, whereas BioSignature Discoverer selected transcripts and metabolites which discriminate between different ages of sunflower plants. The methodology presented here would help to elucidate and predict novel networks and potential biomarkers of leaf senescence in sunflower.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Genômica / Redes Reguladoras de Genes / Metabolômica / Helianthus Tipo de estudo: Prognostic_studies Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Argentina

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Genômica / Redes Reguladoras de Genes / Metabolômica / Helianthus Tipo de estudo: Prognostic_studies Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Argentina