Your browser doesn't support javascript.
loading
Experimental Quantum Randomness Processing Using Superconducting Qubits.
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R; Sun, Luyan; Ma, Xiongfeng.
Afiliação
  • Yuan X; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Liu K; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Xu Y; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Wang W; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Ma Y; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Zhang F; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Yan Z; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Vijay R; Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India.
  • Sun L; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Ma X; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
Phys Rev Lett ; 117(1): 010502, 2016 Jul 01.
Article em En | MEDLINE | ID: mdl-27419550
ABSTRACT
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Revista: Phys Rev Lett Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Revista: Phys Rev Lett Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China