Your browser doesn't support javascript.
loading
Creating Single-Copy Genetic Circuits.
Lee, Jeong Wook; Gyorgy, Andras; Cameron, D Ewen; Pyenson, Nora; Choi, Kyeong Rok; Way, Jeffrey C; Silver, Pamela A; Del Vecchio, Domitilla; Collins, James J.
Afiliação
  • Lee JW; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
  • Gyorgy A; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA.
  • Cameron DE; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
  • Pyenson N; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
  • Choi KR; Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
  • Way JC; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
  • Silver PA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
  • Del Vecchio D; Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA.
  • Collins JJ; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Pro
Mol Cell ; 63(2): 329-336, 2016 07 21.
Article em En | MEDLINE | ID: mdl-27425413
Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling, and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Plasmídeos / Transcrição Gênica / Engenharia Genética / Genoma Bacteriano / Dosagem de Genes / Escherichia coli / Biologia Sintética / Modelos Genéticos Tipo de estudo: Guideline Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Plasmídeos / Transcrição Gênica / Engenharia Genética / Genoma Bacteriano / Dosagem de Genes / Escherichia coli / Biologia Sintética / Modelos Genéticos Tipo de estudo: Guideline Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos