Origin of terminal voltage variations due to self-mixing in terahertz frequency quantum cascade lasers.
Opt Express
; 24(19): 21948-56, 2016 Sep 19.
Article
em En
| MEDLINE
| ID: mdl-27661929
We explain the origin of voltage variations due to self-mixing in a terahertz (THz) frequency quantum cascade laser (QCL) using an extended density matrix (DM) approach. Our DM model allows calculation of both the current-voltage (I-V) and optical power characteristics of the QCL under optical feedback by changing the cavity loss, to which the gain of the active region is clamped. The variation of intra-cavity field strength necessary to achieve gain clamping, and the corresponding change in bias required to maintain a constant current density through the heterostructure is then calculated. Strong enhancement of the self-mixing voltage signal due to non-linearity of the (I-V) characteristics is predicted and confirmed experimentally in an exemplar 2.6 THz bound-to-continuum QCL.
Texto completo:
1
Bases de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Opt Express
Assunto da revista:
OFTALMOLOGIA
Ano de publicação:
2016
Tipo de documento:
Article