Your browser doesn't support javascript.
loading
Nuclear Binding Near a Quantum Phase Transition.
Elhatisari, Serdar; Li, Ning; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-Nan; Meißner, Ulf-G; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Lee, Dean; Rupak, Gautam.
Afiliação
  • Elhatisari S; Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany.
  • Li N; Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany.
  • Rokash A; Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44870 Bochum, Germany.
  • Alarcón JM; Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany.
  • Du D; Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany.
  • Klein N; Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany.
  • Lu BN; Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany.
  • Meißner UG; Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany.
  • Epelbaum E; Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany.
  • Krebs H; JARA-High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany.
  • Lähde TA; Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44870 Bochum, Germany.
  • Lee D; Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44870 Bochum, Germany.
  • Rupak G; Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany.
Phys Rev Lett ; 117(13): 132501, 2016 Sep 23.
Article em En | MEDLINE | ID: mdl-27715077
ABSTRACT
How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (^{4}He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.
Buscar no Google
Bases de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Alemanha
Buscar no Google
Bases de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Alemanha