Your browser doesn't support javascript.
loading
Human Regulatory T Cells Mediate Transcriptional Modulation of Dendritic Cell Function.
Mavin, Emily; Nicholson, Lindsay; Rafez Ahmed, Syed; Gao, Fei; Dickinson, Anne; Wang, Xiao-Nong.
Afiliação
  • Mavin E; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom; and.
  • Nicholson L; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom; and.
  • Rafez Ahmed S; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom; and.
  • Gao F; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE7 1RU, United Kingdom.
  • Dickinson A; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom; and.
  • Wang XN; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom; and X.N.Wang@ncl.ac.uk.
J Immunol ; 198(1): 138-146, 2017 01 01.
Article em En | MEDLINE | ID: mdl-27895173
Regulatory T cells (Treg) attenuate dendritic cell (DC) maturation and stimulatory function. Current knowledge on the functional impact of semimature DC is limited to CD4+ T cell proliferation and cytokine production. Little is known about the molecular basis underpinning the functional effects of Treg-treated DC (Treg-DC). We present novel evidence that Treg-DC skewed CD4+ naive T cell polarization toward a regulatory phenotype and impaired CD8+ T cell allo-reactive responses, including their ability to induce target tissue damage in a unique in vitro human graft-versus-host disease skin explant model. Microarray analysis clustered Treg-DC as a discrete population from mature-DC and immature-DC, with 51 and 93 genes that were significantly over- or underexpressed, respectively, compared with mature-DC. Quantitative real-time PCR analysis revealed an intermediate expression level of CD38, CD83, CD80 and CD86 mRNA in Treg-DC, lower than mature-DC, higher than immature-DC. We also observed an attenuation of NF-κB pathway, an upstream regulator of the aforementioned genes, concomitant with reduced expression of two NF-κB-signaling related genes RELB and NFκBIZ, in the Treg-DC, together with an increased expression of Wnt5a, a negative regulator of DC differentiation. We further confirmed that the Treg-DC-mediated skewed CD4+ naive T cell polarization resulted from decreased IL-12 secretion by Treg-DC, which may be post-transcriptionally modulated by decreased expression of microRNA-155 in Treg-DC. To our knowledge, this is the first study demonstrating a transcriptional modulation of DC function by human Treg, partially via attenuation of the NF-κB signaling pathway and upregulation of Wnt5a, suggesting Treg may interfere with DC reprogramming during maturation, thereby modulating DC function.
Assuntos
Buscar no Google
Bases de dados: MEDLINE Assunto principal: Células Dendríticas / Diferenciação Celular / Linfócitos T Reguladores Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Immunol Ano de publicação: 2017 Tipo de documento: Article
Buscar no Google
Bases de dados: MEDLINE Assunto principal: Células Dendríticas / Diferenciação Celular / Linfócitos T Reguladores Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Immunol Ano de publicação: 2017 Tipo de documento: Article