Your browser doesn't support javascript.
loading
Functional magnetic resonance imaging for in vivo quantification of pulmonary hypertension in the Sugen 5416/hypoxia mouse.
Breen, Ellen C; Scadeng, Miriam; Lai, N Chin; Murray, Fiona; Bigby, Timothy D.
Afiliação
  • Breen EC; Medicine, University of California, San Diego, La Jolla, CA, USA.
  • Scadeng M; Radiology, University of California, San Diego, La Jolla, CA, USA.
  • Lai NC; Pulmonary & Critical Care, Veterans Administration San Diego, La Jolla, CA, USA.
  • Murray F; Medicine, University of Aberdeen, Aberdeen, UK.
  • Bigby TD; Medicine, University of California, San Diego, La Jolla, CA, USA.
Exp Physiol ; 102(3): 347-353, 2017 03 01.
Article em En | MEDLINE | ID: mdl-27897352
ABSTRACT
NEW

FINDINGS:

What is the central question of this study? Non-invasive, quantitative methods to assess right cardiac function in mice with pulmonary hypertension have not been demonstrated. What is the main finding and its importance? This study shows the potential of magnetic resonance imaging to estimate right ventricular ejection fraction and measure spatial, dynamic changes in cardiac structure in the Sugen 5416/hypoxia mouse model of pulmonary hypertension. Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery pressures and right heart failure. Mouse models of PAH are instrumental in understanding the disease pathophysiology. However, few methods are available to evaluate right cardiac function in small animals. In this study, magnetic resonance imaging was used to measure in vivo cardiac dimensions in the Sugen 5416/hypoxia mouse model. Pulmonary hypertension (PH) was induced in C57BL/6 mice by 3 weeks of exposure to 10% oxygen and vascular endothelial growth factor receptor inhibition (20 mg kg-1 SU5416). Control mice were housed in room air and received vehicle (DMSO). Right ventricular pressures were recorded with a pressure-conductance transducer. Short-axis contiguous 1-mm-thick slices were acquired through the heart and great vessels using a fast low-angle shot (FLASH)-cine sequence. Thirteen images were collected throughout each cardiac cycle. Right ventricular systolic pressure was elevated in PH mice (23.6 ± 6 versus 41.0 ± 11 mmHg, control versus PH, respectively; P < 0.001, n = 5-11). Right ventricular wall thickness was greater in PH than in control mice at end diastole (0.30 ± 0.05 versus 0.48 ± 0.06 mm, control versus PH, respectively; P < 0.01, n = 6), but measurements were not different at end systole (control versus PH, 0.59 ± 0.11 versus 0.70 ± 0.11 mm, respectively). Right ventricular ejection fraction was decreased in PH mice (72 ± 3 versus 58 ± 5%, control versus PH, respectively; P < 0.04, n = 6). These data demonstrate that magnetic resonance imaging is a precise method to monitor right ventricular remodelling and cardiac output longitudinally in mouse models of PH.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Hipertensão Pulmonar / Hipóxia Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Exp Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Hipertensão Pulmonar / Hipóxia Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Exp Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos