Your browser doesn't support javascript.
loading
Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes.
Endorf, Elizabeth B; Qing, Hua; Aono, Jun; Terami, Naoto; Doyon, Geneviève; Hyzny, Eric; Jones, Karrie L; Findeisen, Hannes M; Bruemmer, Dennis.
Afiliação
  • Endorf EB; From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University
  • Qing H; From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University
  • Aono J; From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University
  • Terami N; From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University
  • Doyon G; From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University
  • Hyzny E; From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University
  • Jones KL; From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University
  • Findeisen HM; From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University
  • Bruemmer D; From the Saha Cardiovascular Research Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington (E.B.E., H.Q., J.A., K.L.J., H.M.F.); and Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, UPMC and University
Arterioscler Thromb Vasc Biol ; 37(2): 301-311, 2017 Feb.
Article em En | MEDLINE | ID: mdl-27932351
ABSTRACT

OBJECTIVE:

Aberrant proliferation of smooth muscle cells (SMC) in response to injury induces pathological vascular remodeling during atherosclerosis and neointima formation. Telomerase is rate limiting for tissue renewal and cell replication; however, the physiological role of telomerase in vascular diseases remains to be determined. The goal of the present study was to determine whether telomerase reverse transcriptase (TERT) affects proliferative vascular remodeling and to define the molecular mechanism by which TERT supports SMC proliferation. APPROACH AND

RESULTS:

We first demonstrate high levels of TERT expression in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program and not reversed by ectopic overexpression of E2F1. Finally, chromatin immunoprecipitation and accessibility assays revealed that TERT is recruited to E2F1 target sites and promotes chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications.

CONCLUSIONS:

These data indicate a previously unrecognized role for TERT in neointima formation through epigenetic regulation of proliferative gene expression in SMC.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Telomerase / Inativação Gênica / Montagem e Desmontagem da Cromatina / Aterosclerose / Fator de Transcrição E2F1 / Lesões do Sistema Vascular / Neointima / Músculo Liso Vascular Tipo de estudo: Prognostic_studies Idioma: En Revista: Arterioscler Thromb Vasc Biol Assunto da revista: ANGIOLOGIA Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Telomerase / Inativação Gênica / Montagem e Desmontagem da Cromatina / Aterosclerose / Fator de Transcrição E2F1 / Lesões do Sistema Vascular / Neointima / Músculo Liso Vascular Tipo de estudo: Prognostic_studies Idioma: En Revista: Arterioscler Thromb Vasc Biol Assunto da revista: ANGIOLOGIA Ano de publicação: 2017 Tipo de documento: Article