Your browser doesn't support javascript.
loading
Pathophysiology of Migraine: A Disorder of Sensory Processing.
Goadsby, Peter J; Holland, Philip R; Martins-Oliveira, Margarida; Hoffmann, Jan; Schankin, Christoph; Akerman, Simon.
Afiliação
  • Goadsby PJ; Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and
  • Holland PR; Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and
  • Martins-Oliveira M; Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and
  • Hoffmann J; Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and
  • Schankin C; Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and
  • Akerman S; Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and
Physiol Rev ; 97(2): 553-622, 2017 04.
Article em En | MEDLINE | ID: mdl-28179394
ABSTRACT
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions why, how, and when? Why migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Encéfalo / Peptídeo Relacionado com Gene de Calcitonina / Cognição / Receptores de Peptídeo Relacionado com o Gene de Calcitonina / Transtornos de Enxaqueca Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Physiol Rev Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Encéfalo / Peptídeo Relacionado com Gene de Calcitonina / Cognição / Receptores de Peptídeo Relacionado com o Gene de Calcitonina / Transtornos de Enxaqueca Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Physiol Rev Ano de publicação: 2017 Tipo de documento: Article