Your browser doesn't support javascript.
loading
Glycosylated Chromogranin A in Heart Failure: Implications for Processing and Cardiomyocyte Calcium Homeostasis.
Ottesen, Anett Hellebø; Carlson, Cathrine R; Louch, William E; Dahl, Mai Britt; Sandbu, Ragnhild A; Johansen, Rune Forstrøm; Jarstadmarken, Hilde; Bjørås, Magnar; Høiseth, Arne Didrik; Brynildsen, Jon; Sjaastad, Ivar; Stridsberg, Mats; Omland, Torbjørn; Christensen, Geir; Røsjø, Helge.
Afiliação
  • Ottesen AH; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Carlson CR; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Louch WE; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Dahl MB; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Sandbu RA; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Johansen RF; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Jarstadmarken H; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Bjørås M; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Høiseth AD; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Brynildsen J; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Sjaastad I; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Stridsberg M; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Omland T; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Christensen G; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
  • Røsjø H; From the Division of Medicine, Akershus University Hospital, Lørenskog, Norway and Center for Heart Failure Research, University of Oslo, Norway (A.H.O., M.B.D., R.A.S., A.D.H., J.B., T.O., H.R.); Institute for Experimental Medical Research, Oslo University Hospital and Center for Heart Failure Rese
Circ Heart Fail ; 10(2)2017 Feb.
Article em En | MEDLINE | ID: mdl-28209766
ABSTRACT

BACKGROUND:

Chromogranin A (CgA) levels have previously been found to predict mortality in heart failure (HF), but currently no information is available regarding CgA processing in HF and whether the CgA fragment catestatin (CST) may directly influence cardiomyocyte function. METHODS AND

RESULTS:

CgA processing was characterized in postinfarction HF mice and in patients with acute HF, and the functional role of CST was explored in experimental models. Myocardial biopsies from HF, but not sham-operated mice, demonstrated high molecular weight CgA bands. Deglycosylation treatment attenuated high molecular weight bands, induced a mobility shift, and increased shorter CgA fragments. Adjusting for established risk indices and biomarkers, circulating CgA levels were found to be associated with mortality in patients with acute HF, but not in patients with acute exacerbation of chronic obstructive pulmonary disease. Low CgA-to-CST conversion was also associated with increased mortality in acute HF, thus, supporting functional relevance of impaired CgA processing in cardiovascular disease. CST was identified as a direct inhibitor of CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) activity, and CST reduced CaMKIIδ-dependent phosphorylation of phospholamban and the ryanodine receptor 2. In line with CaMKIIδ inhibition, CST reduced Ca2+ spark and wave frequency, reduced Ca2+ spark dimensions, increased sarcoplasmic reticulum Ca2+ content, and augmented the magnitude and kinetics of cardiomyocyte Ca2+ transients and contractions.

CONCLUSIONS:

CgA-to-CST conversion in HF is impaired because of hyperglycosylation, which is associated with clinical outcomes in acute HF. The mechanism for increased mortality may be dysregulated cardiomyocyte Ca2+ handling because of reduced CaMKIIδ inhibition.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Cálcio / Sinalização do Cálcio / Miócitos Cardíacos / Cromogranina A / Insuficiência Cardíaca / Contração Miocárdica Tipo de estudo: Prognostic_studies Limite: Aged / Aged80 / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Circ Heart Fail Assunto da revista: ANGIOLOGIA / CARDIOLOGIA Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Cálcio / Sinalização do Cálcio / Miócitos Cardíacos / Cromogranina A / Insuficiência Cardíaca / Contração Miocárdica Tipo de estudo: Prognostic_studies Limite: Aged / Aged80 / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Circ Heart Fail Assunto da revista: ANGIOLOGIA / CARDIOLOGIA Ano de publicação: 2017 Tipo de documento: Article