Mycobacterium tuberculosis resistance prediction and lineage classification from genome sequencing: comparison of automated analysis tools.
Sci Rep
; 7: 46327, 2017 04 20.
Article
em En
| MEDLINE
| ID: mdl-28425484
Whole-genome sequencing (WGS) has the potential to accelerate drug-susceptibility testing (DST) to design appropriate regimens for drug-resistant tuberculosis (TB). Several recently developed automated software tools promise to standardize the analysis and interpretation of WGS data. We assessed five tools (CASTB, KvarQ, Mykrobe Predictor TB, PhyResSE, and TBProfiler) with regards to DST and phylogenetic lineage classification, which we compared with phenotypic DST, Sanger sequencing, and traditional typing results for a collection of 91 strains. The lineage classifications by the tools generally only differed in the resolution of the results. However, some strains could not be classified at all and one strain was misclassified. The sensitivities and specificities for isoniazid and rifampicin resistance of the tools were high, whereas the results for ethambutol, pyrazinamide, and streptomycin resistance were more variable. False-susceptible DST results were mainly due to missing mutations in the resistance catalogues that the respective tools employed for data interpretation. Notably, we also found cases of false-resistance because of the misclassification of polymorphisms as resistance mutations. In conclusion, the performance of current WGS analysis tools for DST is highly variable. Sustainable business models and a shared, high-quality catalogue of resistance mutations are needed to ensure the clinical utility of these tools.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Tuberculose
/
Genoma Bacteriano
/
Farmacorresistência Bacteriana Múltipla
/
Mycobacterium tuberculosis
/
Antituberculosos
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Alemanha