Detection of Ostreid herpesvirus-1 microvariants in healthy Crassostrea gigas following disease events and their possible role as reservoirs of infection.
J Invertebr Pathol
; 148: 20-33, 2017 09.
Article
em En
| MEDLINE
| ID: mdl-28499928
Ostreid herpesvirus-1 microvariants (OsHV-1) cause severe mortalities in farmed Crassostrea gigas in Europe, New Zealand and Australia. Outbreaks are seasonal, recurring in the warmer months of the year in endemic estuaries. The reference genotype and microvariant genotypes of OsHV-1 have been previously detected in the tissues of apparently healthy adult oysters naturally exposed to OsHV-1 in the field. However, the role of such oysters as reservoirs of infection for subsequent mortality outbreaks remains unclear. The aims of this study were: (1) to identify the optimal sample type to use for the detection of OsHV-1 DNA in apparently healthy C. gigas; and (2) to assess whether live C. gigas maintained on-farm after an OsHV-1 related mortality event remain infected and could act as a reservoir host for subsequent outbreaks. OsHV-1 DNA was detected in the hemolymph, gill, mantle, adductor muscle, gonad and digestive gland of apparently healthy adult oysters. The likelihood of detecting OsHV-1 DNA in hemolymph was equivalent to that in gill and mantle, but the odds of detecting OsHV-1 DNA in hemolymph and gill were more than 8 times that of adductor muscle. Gill had the highest viral loads. Compared to testing whole gill homogenates, testing snippets of the gill improved the detection of OsHV-1 DNA by about four fold. The prevalence of OsHV-1 in gill and mantle was highest after the first season of OsHV-1 exposure; it then declined to low or negligible levels in the same cohorts in subsequent seasons, despite repeated seasonal exposure in monitoring lasting up to 4years. The hemolymph of individually identified oysters was repeatedly sampled over 15months, and OsHV-1 prevalence declined over that time frame in the youngest cohort, which had been exposed to OsHV-1 for the first time at the start of that season. In contrast, the prevalence in two cohorts of older oysters, which had been exposed to OsHV-1 in prior seasons, was consistently low (<10%). Viral loads were <104 DNA copies per mg tissue or µL hemolymph, suggesting that OsHV-1 was not being maintained at or amplified to high quantities. Therefore, while OsHV-1 may persist within apparently healthy oysters that have survived an outbreak of disease, they may not be a major reservoir host for the virus for subsequent outbreaks. However, further investigation is required to ascertain whether OsHV-1 replication occurs in surviving oysters, and whether transmission from them to naive oysters and induction of clinical disease is possible.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Vírus de DNA
/
Crassostrea
Tipo de estudo:
Diagnostic_studies
/
Risk_factors_studies
Limite:
Animals
País/Região como assunto:
Oceania
Idioma:
En
Revista:
J Invertebr Pathol
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Austrália