(Pro)renin receptor activation increases profibrotic markers and fibroblast-like phenotype through MAPK-dependent ROS formation in mouse renal collecting duct cells.
Clin Exp Pharmacol Physiol
; 44(11): 1134-1144, 2017 Nov.
Article
em En
| MEDLINE
| ID: mdl-28696542
Recent studies suggested that activation of the PRR upregulates profibrotic markers through reactive oxygen species (ROS) formation; however, the exact mechanisms have not been investigated in CD cells. We hypothesized that activation of the PRR increases the expression of profibrotic markers through MAPK-dependent ROS formation in CD cells. Mouse renal CD cell line (M-1) was treated with recombinant prorenin plus ROS or MAPK inhibitors and PRR-shRNA to evaluate their effect on the expression of profibrotic markers. PRR immunostaining revealed plasma membrane and intracellular localization. Recombinant prorenin increases ROS formation (6.0 ± 0.5 vs 3.9 ± 0.1 nmol/L DCF/µg total protein, P < .05) and expression of profibrotic markers CTGF (149 ± 12%, P < .05), α-SMA (160 ± 20%, P < .05), and PAI-I (153 ± 13%, P < .05) at 10-8 mol/L. Recombinant prorenin-induced phospho ERK 1/2 (p44 and p42) at 10-8 and 10-6 mol/L after 20 minutes. Prorenin-dependent ROS formation and augmentation of profibrotic factors were blunted by ROS scavengers (trolox, p-coumaric acid, ascorbic acid), the MEK inhibitor PD98059 and PRR transfections with PRR-shRNA. No effects were observed in the presence of antioxidants alone. Prorenin-induced upregulation of collagen I and fibronectin was blunted by ROS scavenging or MEK inhibition independently. PRR-shRNA partially prevented this induction. After 24 hours prorenin treatment M-1 cells undergo to epithelial-mesenchymal transition phenotype, however MEK inhibitor PD98059 and PRR knockdown prevented this effect. These results suggest that PRR might have a significant role in tubular damage during conditions of high prorenin-renin secretion in the CD.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Espécies Reativas de Oxigênio
/
Receptores de Superfície Celular
/
Proteínas Quinases Ativadas por Mitógeno
/
Fibroblastos
/
Rim
Limite:
Animals
Idioma:
En
Revista:
Clin Exp Pharmacol Physiol
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Chile