Your browser doesn't support javascript.
loading
Selective MET Kinase Inhibition in MET-Dependent Glioma Models Alters Gene Expression and Induces Tumor Plasticity.
van den Heuvel, Corina N A M; Navis, Anna C; de Bitter, Tessa; Amiri, Houshang; Verrijp, Kiek; Heerschap, Arend; Rex, Karen; Dussault, Isabelle; Caenepeel, Sean; Coxon, Angela; Span, Paul N; Wesseling, Pieter; Hendriks, Wiljan; Leenders, William P J.
Afiliação
  • van den Heuvel CNAM; Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands.
  • Navis AC; Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands.
  • de Bitter T; Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands.
  • Amiri H; Department of Radiology, Radboud University Medical Centre, Nijmegen, the Netherlands.
  • Verrijp K; Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands.
  • Heerschap A; Department of Radiology, Radboud University Medical Centre, Nijmegen, the Netherlands.
  • Rex K; Department of Oncology Research, Amgen Inc., Thousand Oaks, California.
  • Dussault I; Department of Oncology Research, Amgen Inc., Thousand Oaks, California.
  • Caenepeel S; Department of Oncology Research, Amgen Inc., Thousand Oaks, California.
  • Coxon A; Department of Oncology Research, Amgen Inc., Thousand Oaks, California.
  • Span PN; Department of Radiation Oncology, Radboud University Medical Centre, Radiotherapy and Oncoimmunology Laboratory, Nijmegen, the Netherlands.
  • Wesseling P; Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands.
  • Hendriks W; Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.
  • Leenders WPJ; Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands. william.leenders@radboudumc.nl.
Mol Cancer Res ; 15(11): 1587-1597, 2017 11.
Article em En | MEDLINE | ID: mdl-28751462
ABSTRACT
The receptor tyrosine kinase (RTK) MET represents a promising tumor target in a subset of glioblastomas. Most RTK inhibitors available in the clinic today, including those inhibiting MET, affect multiple targets simultaneously. Previously, it was demonstrated that treatment with cabozantinib (MET/VEGFR2/RET inhibitor) prolonged survival of mice carrying orthotopic patient-derived xenografts (PDX) of the MET-addicted glioblastoma model E98, yet did not prevent development of recurrent and cabozantinib-resistant tumors. To exclude VEGFR2 inhibition-inflicted blood-brain barrier normalization and diminished tumor distribution of the drug, we have now investigated the effects of the novel MET-selective inhibitor Compound A in the orthotopic E98 xenograft model. In vitro, Compound A proved a highly potent inhibitor of proliferation of MET-addicted cell lines. In line with its target selectivity, Compound A did not restore the leaky blood-brain barrier and was more effective than cabozantinib in inhibiting MET phosphorylation in vivo Compound A treatment significantly prolonged survival of mice carrying E98 tumor xenografts, but did not prevent eventual progression. Contrasting in vitro results, the Compound A-treated xenografts displayed high levels of AKT phosphorylation despite the absence of phosphorylated MET. Profiling by RNA sequencing showed that in vivo transcriptomes differed significantly from those in control xenografts.Implications Collectively, these findings demonstrate the plasticity of paracrine growth factor receptor signaling in vivo and urge for prudency with in vitro drug-testing strategies to validate monotherapies. Mol Cancer Res; 15(11); 1587-97. ©2017 AACR.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Pirazóis / Neoplasias Encefálicas / Análise de Sequência de RNA / Perfilação da Expressão Gênica / Bibliotecas de Moléculas Pequenas / Glioma / Aminopiridinas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Cancer Res Assunto da revista: BIOLOGIA MOLECULAR / NEOPLASIAS Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Pirazóis / Neoplasias Encefálicas / Análise de Sequência de RNA / Perfilação da Expressão Gênica / Bibliotecas de Moléculas Pequenas / Glioma / Aminopiridinas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Cancer Res Assunto da revista: BIOLOGIA MOLECULAR / NEOPLASIAS Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Holanda