Determination of an Optimal Pharmacokinetic Model of 18F-FET for Quantitative Applications in Rat Brain Tumors.
J Nucl Med
; 58(8): 1278-1284, 2017 08.
Article
em En
| MEDLINE
| ID: mdl-28765227
O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) is a radiolabeled artificial amino acid used in PET for tumor delineation and grading. The present study compares different kinetic models to determine which are more appropriate for 18F-FET in rats. Methods: Rats were implanted with F98 glioblastoma cells in the right hemisphere and scanned 9-15 d later. PET data were acquired during 50 min after a 1-min bolus of 18F-FET. Arterial blood samples were drawn for arterial input function determination. Two compartmental pharmacokinetic models were tested: the 2-tissue model and the 1-tissue model. Their performance at fitting concentration curves from regions of interest was evaluated using the Akaike information criterion, F test, and residual plots. Graphical models were assessed qualitatively. Results: Metrics indicated that the 2-tissue model was superior to the 1-tissue model for the current dataset. The 2-tissue model allowed adequate decoupling of 18F-FET perfusion and internalization by cells in the different regions of interest. Of the 2 graphical models tested, the Patlak plot provided adequate results for the tumor and brain, whereas the Logan plot was appropriate for muscles. Conclusion: The 2-tissue-compartment model is appropriate to quantify the perfusion and internalization of 18F-FET by cells in various tissues of the rat, whereas graphical models provide a global measure of uptake.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Tirosina
/
Neoplasias Encefálicas
/
Modelos Biológicos
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
J Nucl Med
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Canadá