Your browser doesn't support javascript.
loading
Multifunctional Cationic Iridium(III) Complexes Bearing 2-Aryloxazolo[4,5-f][1,10]phenanthroline (N
Zhu, Xiaolin; Cui, Peng; Kilina, Svetlana; Sun, Wenfang.
Afiliação
  • Zhu X; Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States.
  • Cui P; Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States.
  • Kilina S; Materials and Nanotechnology Program, North Dakota State University , Fargo, North Dakota 58105, United States.
  • Sun W; Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States.
Inorg Chem ; 56(22): 13715-13731, 2017 Nov 20.
Article em En | MEDLINE | ID: mdl-29083889
ABSTRACT
A series of 2-aryloxazolo[4,5-f][1,10]phenanthroline ligands (N^N ligands) and their cationic iridium(III) complexes (1-11, aryl = 4-NO2-phenyl (1), 4-Br-phenyl (2), Ph (3), 4-NPh2-phenyl (4), 4-NH2-phenyl (5), pyridin-4-yl (6), naphthalen-1-yl (7), naphthalen-2-yl (8), phenanthren-9-yl (9), anthracen-9-yl (10), and pyren-1-yl (11)) were synthesized and characterized. By introducing different electron-donating or electron-withdrawing substituents at the 4-position of the 2-phenyl ring (1-5), or different aromatic substituents with varied degrees of π-conjugation (6-11) on oxazolo[4,5-f][1,10]phenanthroline ligand, we aim to understand the effects of terminal substituents at the N^N ligands on the photophysics of cationic Ir(III) complexes using both spectroscopic methods and quantum chemistry calculations. Complexes with the 4-R-phenyl substituents adopted an almost coplanar structure with the oxazolo[4,5-f][1,10]phenanthroline motif, while the polycyclic aryl substituents (except for naphthalen-2-yl) were twisted away from the oxazolo[4,5-f][1,10]phenanthroline motif. All complexes possessed strong absorption bands below 350 nm that emanated from the ligand-localized 1π,π*/1ILCT (intraligand charge transfer) transitions, mixed with 1LLCT (ligand-to-ligand charge transfer)/1MLCT (metal-to-ligand charge transfer) transitions. At the range of 350-570 nm, all complexes exhibited moderately strong 1ILCT/1LLCT/1MLCT transitions at 350-450 nm, and broad but very weak 3LLCT/3MLCT absorption at 450-570 nm. Most of the complexes demonstrated moderate to strong room temperature phosphorescence both in solution and in the solid state. Among them, complex 7 also manifested a drastic mechanochromic and vapochromic luminescence effect. Except for complexes 1 and 4 that contain NO2 or NPh2 substituent at the phenyl ring, respectively, all other complexes exhibited moderate to strong triplet excited-state absorption in the spectral region of 440-750 nm. Moderate to very strong reverse saturable absorption (RSA) of these complexes appeared at 532 nm for 4.1 ns laser pulses. The RSA strength followed the trend of 7 > 11 > 9 > 3 > 2 ≈ 4 > 5 ≈ 10 ≈ 6 ≈ 8 > 1. The photophysical studies revealed that the different 2-aryl substituents on the oxazole ring impacted the singlet and triplet excited-state characteristics dramatically, which in turn notably influenced the RSA of these complexes.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Inorg Chem Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos