Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin.
Sci Immunol
; 2(17)2017 11 03.
Article
em En
| MEDLINE
| ID: mdl-29101209
Candida albicans is a dimorphic commensal fungus that causes severe oral infections in immunodeficient patients. Invasion of C. albicans hyphae into oral epithelium is an essential virulence trait. Interleukin-17 (IL-17) signaling is required for both innate and adaptive immunity to C. albicans During the innate response, IL-17 is produced by γδ T cells and a poorly understood population of innate-acting CD4+ αß T cell receptor (TCRαß)+ cells, but only the TCRαß+ cells expand during acute infection. Confirming the innate nature of these cells, the TCR was not detectably activated during the primary response, as evidenced by Nur77eGFP mice that report antigen-specific signaling through the TCR. Rather, the expansion of innate TCRαß+ cells was driven by both intrinsic and extrinsic IL-1R signaling. Unexpectedly, there was no requirement for CCR6/CCL20-dependent recruitment or prototypical fungal pattern recognition receptors. However, C. albicans mutants that cannot switch from yeast to hyphae showed impaired TCRαß+ cell proliferation and Il17a expression. This prompted us to assess the role of candidalysin, a hyphal-associated peptide that damages oral epithelial cells and triggers production of inflammatory cytokines including IL-1. Candidalysin-deficient strains failed to up-regulate Il17a or drive the proliferation of innate TCRαß+ cells. Moreover, candidalysin signaled synergistically with IL-17, which further augmented the expression of IL-1α/ß and other cytokines. Thus, IL-17 and C. albicans, via secreted candidalysin, amplify inflammation in a self-reinforcing feed-forward loop. These findings challenge the paradigm that hyphal formation per se is required for the oral innate response and demonstrate that establishment of IL-1- and IL-17-dependent innate immunity is induced by tissue-damaging hyphae.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Candida albicans
/
Candidíase
/
Proteínas Fúngicas
/
Interleucina-17
/
Células Epiteliais
Limite:
Animals
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
Sci Immunol
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Estados Unidos