Your browser doesn't support javascript.
loading
Knockout of l-Histidine Decarboxylase Prevents Cholangiocyte Damage and Hepatic Fibrosis in Mice Subjected to High-Fat Diet Feeding via Disrupted Histamine/Leptin Signaling.
Kennedy, Lindsey; Hargrove, Laura; Demieville, Jennifer; Bailey, Jennifer M; Dar, Wasim; Polireddy, Kishore; Chen, Qingzheng; Nevah Rubin, Moises I; Sybenga, Amelia; DeMorrow, Sharon; Meng, Fanyin; Stockton, Lindsey; Alpini, Gianfranco; Francis, Heather.
Afiliação
  • Kennedy L; Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas.
  • Hargrove L; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas.
  • Demieville J; Department of Research, Central Texas Veterans Health Care System, Bryan, Texas.
  • Bailey JM; Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
  • Dar W; Division of Immunology and Organ Transplantation, Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas.
  • Polireddy K; Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
  • Chen Q; Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
  • Nevah Rubin MI; Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
  • Sybenga A; Department of Anatomic and Clinical Pathology, Baylor Scott & White Health, Temple, Texas.
  • DeMorrow S; Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas.
  • Meng F; Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas.
  • Stockton L; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas.
  • Alpini G; Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas.
  • Francis H; Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas. Electro
Am J Pathol ; 188(3): 600-615, 2018 03.
Article em En | MEDLINE | ID: mdl-29248461
ABSTRACT
Feeding a high-fat diet (HFD) coupled with sugar, mimicking a Western diet, causes fatty liver disease in mice. Histamine induces biliary proliferation and fibrosis and regulates leptin signaling. Wild-type (WT) and l-histidine decarboxylase (Hdc-/-) mice were fed a control diet or an HFD coupled with a high fructose corn syrup equivalent. Hematoxylin and eosin and Oil Red O staining were performed to determine steatosis. Biliary mass and cholangiocyte proliferation were evaluated by immunohistochemistry. Senescence and fibrosis were measured by quantitative PCR and immunohistochemistry. Hepatic stellate cell activation was detected by immunofluorescence. Histamine and leptin levels were measured by enzyme immunoassay. Leptin receptor (Ob-R) was evaluated by quantitative PCR. The HDC/histamine/histamine receptor axis, ductular reaction, and biliary senescence were evaluated in patients with nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, or end-stage liver disease. Hdc-/- HFD mice had increased steatosis compared with WT HFD mice. WT HFD mice had increased biliary mass, biliary proliferation, senescence, fibrosis, and hepatic stellate cell activation, which were reduced in Hdc-/- HFD mice. In Hdc-/- HFD mice, serum leptin levels increased, whereas biliary Ob-R expression decreased. Nonalcoholic steatohepatitis patients had increased HDC/histamine/histamine receptor signaling. Hdc-/- HFD mice are susceptible to obesity via dysregulated leptin/Ob-R signaling, whereas the lack of HDC protects from HFD-induced fibrosis and cholangiocyte damage. HDC/histamine/leptin signaling may be important in managing obesity-induced biliary damage.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Histamina / Leptina / Dieta Hiperlipídica / Hepatopatia Gordurosa não Alcoólica / Histidina Descarboxilase / Cirrose Hepática Limite: Adult / Aged / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Am J Pathol Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Histamina / Leptina / Dieta Hiperlipídica / Hepatopatia Gordurosa não Alcoólica / Histidina Descarboxilase / Cirrose Hepática Limite: Adult / Aged / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Am J Pathol Ano de publicação: 2018 Tipo de documento: Article