Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model.
J Orthop Sci
; 23(4): 688-696, 2018 Jul.
Article
em En
| MEDLINE
| ID: mdl-29571958
BACKGROUND: Mature adipocyte-derived dedifferentiated fat (DFAT) cells possesses the ability to proliferate effectively and the potential to differentiate into multiple linages of mesenchymal tissue; similar to adipose-derived stem cells (ASCs). The purpose of this study is to examine the effects of DFAT cell transplantation on cartilage repair in a rat model of osteochondral defects. METHODS: Full-thickness osteochondral defects were created in the knees of Sprague-Dawley rats bilaterally. Cartilage-like micromass pellets were prepared from green fluorescent protein (GFP)-labeled rat DFAT cells and subsequently transplanted into the affected right knee of these rats. Defects in the left knee were used as a control. Macroscopic and microscopic changes of treated and control defects were evaluated up to 12 weeks post-treatment with DFAT cells. To observe the transplanted cells, sectioned femurs were immunostained for GFP and type II collagen. RESULTS: DFAT cells formed micromass pellets expressing characteristics of immature cartilage in vitro. In the DFAT cell-transplanted limbs, the defects were completely filled with white micromass pellets as early as 2 weeks post-treatment. These limbs became smooth at 4 weeks. Conversely, the defects in the control limbs were still not repaired by 4 weeks. Macroscopic ICRS scores at 2 and 4 weeks were significantly higher in the DFAT cells-transplanted limbs compared to those of the control limbs. The modified O'Driscol histological scores for the DFAT cell-transplanted limbs were significantly higher than those of the control limbs at corresponding time points. GFP-positive DAFT cells were detected in the transplanted area at 2 weeks but hardly visible at 12 weeks post-operation. CONCLUSIONS: Transplantation of DFAT cell-derived micromass pellets contribute to cartilage repair in a rat osteochondral defect model. DFAT cell transplantation may be a viable therapeutic strategy for the repair of osteochondral injuries.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Cartilagem Articular
/
Transplante de Células
/
Adipócitos
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
J Orthop Sci
Assunto da revista:
ORTOPEDIA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Japão