Zebrafish-based identification of the antiseizure nucleoside inosine from the marine diatom Skeletonema marinoi.
PLoS One
; 13(4): e0196195, 2018.
Article
em En
| MEDLINE
| ID: mdl-29689077
With the goal of identifying neuroactive secondary metabolites from microalgae, a microscale in vivo zebrafish bioassay for antiseizure activity was used to evaluate bioactivities of the diatom Skeletonema marinoi, which was recently revealed as being a promising source of drug-like small molecules. A freeze-dried culture of S. marinoi was extracted by solvents with increasing polarities (hexane, dichloromethane, methanol and water) and these extracts were screened for anticonvulsant activity using a larval zebrafish epilepsy model with seizures induced by the GABAA antagonist pentylenetetrazole. The methanolic extract of S. marinoi exhibited significant anticonvulsant activity and was chosen for bioassay-guided fractionation, which associated the bioactivity with minor constituents. The key anticonvulsant constituent was identified as the nucleoside inosine, a well-known adenosine receptor agonist with previously reported antiseizure activities in mice and rat epilepsy models, but not reported to date as a bioactive constituent of microalgae. In addition, a UHPLC-HRMS metabolite profiling was used for dereplication of the other constituents of S. marinoi. Structures of the isolated compounds were elucidated by nuclear magnetic resonance and high-resolution spectrometry. These results highlight the potential of zebrafish-based screening and bioassay-guided fractionation to identify neuroactive marine natural products.
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Pentilenotetrazol
/
Convulsões
/
Diatomáceas
/
Inosina
/
Anticonvulsivantes
Tipo de estudo:
Diagnostic_studies
Limite:
Animals
Idioma:
En
Revista:
PLoS One
Assunto da revista:
CIENCIA
/
MEDICINA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Suíça