Hybrid Mesoporous-Microporous Nanocarriers for Overcoming Multidrug Resistance by Sequential Drug Delivery.
Mol Pharm
; 15(7): 2503-2512, 2018 07 02.
Article
em En
| MEDLINE
| ID: mdl-29768014
Combination chemotherapy with a modulator and a chemotherapeutic drug has become one of the most promising strategies for the treatment of multidrug resistance (MDR) in cancer therapy. However, the development of nanocarriers with a high payload and sequential release of therapeutic agents poses a significant challenge. In this work, we report a type of hybrid nanocarriers prepared by polydopamine (PDA) mediated integration of the mesoporous MSN core and the microporous zeolite imidazolate frameworks-8 (ZIF-8) shell. The nanocarriers exploit storage capacities for drugs based on the high porosity and molecular sieving capabilities of ZIF-8 for sequential drug release. Particularly, large amounts of an anticancer drug (DOX, 607 µg mg-1) and a MDR inhibitor curcumin (CUR, 778 µg mg-1) were sequentially loaded in the mesoporous core via π-π stacking interactions mediated by PDA and in the microporous shell via the encapsulation during ZIF-8 growth. The sustained release of DOX was observed to follow earlier and faster release of CUR by acid-sensitive dissolution of the ZIF-8 shell. Furthermore, the nanoparticles showed good biocompatibility and effective cellular uptake in in vitro evaluations using drug-resistant MCF-7/ADR cancer cells. More importantly, the preferentially released CUR inhibited the drug efflux function of the membrane P-glycoprotein (P-gp), which subsequently facilitated the nuclear transportation of DOX released from the PDA-MSN core, and, in turn, the synergistic effects on killing MDR cancer cells. The hybrid mesoporous-microporous nanocarrier holds great promise for combination chemotherapy applications on the basis of sequential drug release.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Portadores de Fármacos
/
Resistência a Múltiplos Medicamentos
/
Resistencia a Medicamentos Antineoplásicos
/
Neoplasias
/
Antineoplásicos
Limite:
Humans
Idioma:
En
Revista:
Mol Pharm
Assunto da revista:
BIOLOGIA MOLECULAR
/
FARMACIA
/
FARMACOLOGIA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
China