Your browser doesn't support javascript.
loading
Hybrid Mesoporous-Microporous Nanocarriers for Overcoming Multidrug Resistance by Sequential Drug Delivery.
Wang, Liucan; Guan, Haidi; Wang, Zhenqiang; Xing, Yuxin; Zhang, Jixi; Cai, Kaiyong.
Afiliação
  • Wang L; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China.
  • Guan H; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China.
  • Wang Z; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China.
  • Xing Y; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China.
  • Zhang J; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China.
  • Cai K; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , No. 174 Shazheng Road , Chongqing 400044 , China.
Mol Pharm ; 15(7): 2503-2512, 2018 07 02.
Article em En | MEDLINE | ID: mdl-29768014
Combination chemotherapy with a modulator and a chemotherapeutic drug has become one of the most promising strategies for the treatment of multidrug resistance (MDR) in cancer therapy. However, the development of nanocarriers with a high payload and sequential release of therapeutic agents poses a significant challenge. In this work, we report a type of hybrid nanocarriers prepared by polydopamine (PDA) mediated integration of the mesoporous MSN core and the microporous zeolite imidazolate frameworks-8 (ZIF-8) shell. The nanocarriers exploit storage capacities for drugs based on the high porosity and molecular sieving capabilities of ZIF-8 for sequential drug release. Particularly, large amounts of an anticancer drug (DOX, 607 µg mg-1) and a MDR inhibitor curcumin (CUR, 778 µg mg-1) were sequentially loaded in the mesoporous core via π-π stacking interactions mediated by PDA and in the microporous shell via the encapsulation during ZIF-8 growth. The sustained release of DOX was observed to follow earlier and faster release of CUR by acid-sensitive dissolution of the ZIF-8 shell. Furthermore, the nanoparticles showed good biocompatibility and effective cellular uptake in in vitro evaluations using drug-resistant MCF-7/ADR cancer cells. More importantly, the preferentially released CUR inhibited the drug efflux function of the membrane P-glycoprotein (P-gp), which subsequently facilitated the nuclear transportation of DOX released from the PDA-MSN core, and, in turn, the synergistic effects on killing MDR cancer cells. The hybrid mesoporous-microporous nanocarrier holds great promise for combination chemotherapy applications on the basis of sequential drug release.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Portadores de Fármacos / Resistência a Múltiplos Medicamentos / Resistencia a Medicamentos Antineoplásicos / Neoplasias / Antineoplásicos Limite: Humans Idioma: En Revista: Mol Pharm Assunto da revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Portadores de Fármacos / Resistência a Múltiplos Medicamentos / Resistencia a Medicamentos Antineoplásicos / Neoplasias / Antineoplásicos Limite: Humans Idioma: En Revista: Mol Pharm Assunto da revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China