Quantitative Study of Charge Carrier Dynamics in Well-Defined WO3 Nanowires and Nanosheets: Insight into the Crystal Facet Effect in Photocatalysis.
J Am Chem Soc
; 140(29): 9078-9082, 2018 07 25.
Article
em En
| MEDLINE
| ID: mdl-29979871
Photocatalysts with different morphologies and specific exposed facets usually exhibit distinguished activities. Previous researches have focused on revealing the essence of the facet effect in photocatalysis; however, quantitative analyses on the differences of carrier dynamic between different facets are scarce. Herein, we successfully synthesized WO3 nanosheets and nanowires with dominant exposed facets of {001} and {110}, respectively. The lower hole effective mass on {110} (0.94 m0) than on {001} (1.28 m0) calculated by density functional theory leads to the higher hole mobility on {110} (4.92 cm2 V-1 s-1) than on {001} (3.14 cm2 V-1 s-1). Combined with the Einstein equation and the lifetime of the hole, the calculated hole diffusion length on {110} (74.8 nm) is larger than on {001} (53.4 nm). Overall, the lower hole effective mass, higher hole mobility, and greater hole diffusion length on {110} collectively result in a photocatalytic activity on benzyl alcohol oxidation 2.46 times as high as that on {001}.
Texto completo:
1
Bases de dados:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
China