Your browser doesn't support javascript.
loading
Heat shock proteins are differentially expressed in brain and spinal cord: implications for multiple sclerosis.
Gorter, R P; Nutma, E; Jahrei, M-C; de Jonge, J C; Quinlan, R A; van der Valk, P; van Noort, J M; Baron, W; Amor, S.
Afiliação
  • Gorter RP; Pathology Department, Amsterdam UMC, VUMC, Groningen, UK.
  • Nutma E; Pathology Department, Amsterdam UMC, VUMC, Groningen, UK.
  • Jahrei MC; Pathology Department, Amsterdam UMC, VUMC, Groningen, UK.
  • de Jonge JC; Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, UK.
  • Quinlan RA; Department of Biosciences, Durham University, Durham, UK.
  • van der Valk P; Pathology Department, Amsterdam UMC, VUMC, Groningen, UK.
  • van Noort JM; Delta Crystallon BV, Leiden, the Netherlands.
  • Baron W; Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, UK.
  • Amor S; Pathology Department, Amsterdam UMC, VUMC, Groningen, UK.
Clin Exp Immunol ; 194(2): 137-152, 2018 11.
Article em En | MEDLINE | ID: mdl-30014472
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by demyelination, inflammation and neurodegeneration throughout the central nervous system. Although spinal cord pathology is an important factor contributing to disease progression, few studies have examined MS lesions in the spinal cord and how they differ from brain lesions. In this study we have compared brain and spinal cord white (WM) and grey (GM) matter from MS and control tissues, focusing on small heat shock proteins (HSPB) and HSP16.2. Western blotting was used to examine protein levels of HSPB1, HSPB5, HSPB6, HSPB8 and HSP16.2 in brain and spinal cord from MS and age-matched non-neurological controls. Immunohistochemistry was used to examine expression of the HSPs in MS spinal cord lesions and controls. Expression levels were quantified using ImageJ. Western blotting revealed significantly higher levels of HSPB1, HSPB6 and HSPB8 in MS and control spinal cord compared to brain tissues. No differences in HSPB5 and HSP16.2 protein levels were observed, although HSPB5 protein levels were higher in brain WM versus GM. In MS spinal cord lesions, increased HSPB1 and HSPB5 expression was observed in astrocytes, and increased neuronal expression of HSP16.2 was observed in normal-appearing GM and type 1 GM lesions. The high constitutive expression of several HSPBs in spinal cord and increased expression of HSPBs and HSP16.2 in MS illustrate differences between brain and spinal cord in health and upon demyelination. Regional differences in HSP expression may reflect differences in astrocyte cytoskeleton composition and influence inflammation, possibly affecting the effectiveness of pharmacological agents.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Medula Espinal / Encéfalo / Astrócitos / Substância Cinzenta / Substância Branca / Proteínas de Choque Térmico / Esclerose Múltipla / Neurônios Limite: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Clin Exp Immunol Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Medula Espinal / Encéfalo / Astrócitos / Substância Cinzenta / Substância Branca / Proteínas de Choque Térmico / Esclerose Múltipla / Neurônios Limite: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Clin Exp Immunol Ano de publicação: 2018 Tipo de documento: Article