CircMarker: a fast and accurate algorithm for circular RNA detection.
BMC Genomics
; 19(Suppl 6): 572, 2018 Aug 13.
Article
em En
| MEDLINE
| ID: mdl-30367583
BACKGROUND: While RNA is often created from linear splicing during transcription, recent studies have found that non-canonical splicing sometimes occurs. Non-canonical splicing joins 3' and 5' and forms the so-called circular RNA. It is now believed that circular RNA plays important biological roles such as affecting susceptibility of some diseases. During the past several years, multiple experimental methods have been developed to enrich circular RNA while degrade linear RNA. Although several useful software tools for circular RNA detection have been developed as well, these tools are based on reads mapping may miss many circular RNA. Also, existing tools are slow for large data due to their dependence on reads mapping. METHOD: In this paper, we present a new computational approach, named CircMarker, based on k-mers rather than reads mapping for circular RNA detection. CircMarker takes advantage of transcriptome annotation files to create the k-mer table for circular RNA detection. RESULTS: Empirical results show that CircMarker outperforms existing tools in circular RNA detection on accuracy and efficiency in many simulated and real datasets. CONCLUSIONS: We develop a new circular RNA detection method called CircMarker based on k-mer analysis. Our results on both simulation data and real data demonstrate that CircMarker runs much faster and can find more circular RNA with higher consensus-based sensitivity and high accuracy ratio compared with existing tools.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Algoritmos
/
RNA
/
Análise de Sequência de RNA
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
BMC Genomics
Assunto da revista:
GENETICA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Estados Unidos