Your browser doesn't support javascript.
loading
Enhanced Point-of-Care Ultrasound Applications by Integrating Automated Feature-Learning Systems Using Deep Learning.
Shokoohi, Hamid; LeSaux, Maxine A; Roohani, Yusuf H; Liteplo, Andrew; Huang, Calvin; Blaivas, Michael.
Afiliação
  • Shokoohi H; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
  • LeSaux MA; Department of Emergency Medicine, (George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
  • Roohani YH; Platform Technology and Science, GlaxoSmithKline, Cambridge, Massachusetts, USA.
  • Liteplo A; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
  • Huang C; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
  • Blaivas M; Department of Emergency Medicine, University of South Carolina School of Medicine, Columbia, South Carolina, USA.
J Ultrasound Med ; 38(7): 1887-1897, 2019 Jul.
Article em En | MEDLINE | ID: mdl-30426536
Recent applications of artificial intelligence (AI) and deep learning (DL) in health care include enhanced diagnostic imaging modalities to support clinical decisions and improve patients' outcomes. Focused on using automated DL-based systems to improve point-of-care ultrasound (POCUS), we look at DL-based automation as a key field in expanding and improving POCUS applications in various clinical settings. A promising additional value would be the ability to automate training model selections for teaching POCUS to medical trainees and novice sonologists. The diversity of POCUS applications and ultrasound equipment, each requiring specialized AI models and domain expertise, limits the use of DL as a generic solution. In this article, we highlight the most advanced potential applications of AI in POCUS tailored to high-yield models in automated image interpretations, with the premise of improving the accuracy and efficacy of POCUS scans.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Ultrassonografia / Sistemas Automatizados de Assistência Junto ao Leito / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: J Ultrasound Med Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Ultrassonografia / Sistemas Automatizados de Assistência Junto ao Leito / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: J Ultrasound Med Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos