Your browser doesn't support javascript.
loading
Optimization of microbial cell disruption using pressurized CO2 for improving lipid recovery from wet biomass.
Howlader, Md Shamim; DuBien, Janice; Hassan, El Barbary; Rai, Neeraj; French, William Todd.
Afiliação
  • Howlader MS; Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS, 39762, USA.
  • DuBien J; Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS, 39762, USA.
  • Hassan EB; Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, MS, 39762, USA.
  • Rai N; Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS, 39762, USA.
  • French WT; Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS, 39762, USA.
Bioprocess Biosyst Eng ; 42(5): 763-776, 2019 May.
Article em En | MEDLINE | ID: mdl-30710227
ABSTRACT
Microbial cell disruption using pressurized gases (e.g., CO2) is a promising approach to improve the lipid recovery from wet oleaginous microorganisms by eliminating the energy-intensive drying required for conventional methods. In this study, we perform cell disruption of Rhodotorula glutinis using pressurized CH4, N2, and Ar where we find the efficacy of these gases on cell viability is minimal. Since CO2 is found to be the only viable gas for microbial cell disruption among these four gases, we use a combination of Box-Behnken design and response surface methodology (RSM) to find the optimal cell disruption by tuning different parameters such as pressure (P), temperature (T), exposure time (t), and agitation (a). From RSM, we find 6 log reduction of viable cells at optimized conditions, which corresponds to more than 99% cell death at P = 4000 kPa, T = 296.5 K, t = 360 min, and a = 325 rpm. Furthermore, from the scanning electron microscope (SEM), we find a complete morphological change in the cell structure when treated with pressurized CO2 compared to the untreated cells. Finally, we find that up to 85% of total lipid can be recovered using optimized pressurized CO2 from wet biomass compared to the untreated wet cells where up to 73% lipid can be recovered.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Basidiomycota / Dióxido de Carbono / Biomassa / Biocombustíveis / Lipídeos Idioma: En Revista: Bioprocess Biosyst Eng Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Basidiomycota / Dióxido de Carbono / Biomassa / Biocombustíveis / Lipídeos Idioma: En Revista: Bioprocess Biosyst Eng Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos