Your browser doesn't support javascript.
loading
Overcoming limitations in photochemical UVC/H2O2 systems using a mili-photoreactor (NETmix): Oxytetracycline oxidation.
Espíndola, Jonathan C; Cristóvão, Raquel O; Mayer, Diego A; Boaventura, Rui A R; Dias, Madalena M; Lopes, José Carlos B; Vilar, Vítor J P.
Afiliação
  • Espíndola JC; Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; CNPq - National Council for Scientific and Technological Development
  • Cristóvão RO; Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal. Electronic address: raquel.cristovao@fe.up.pt.
  • Mayer DA; Laboratório de Transferência de Massa e Simulação Numérica de Sistemas Químicos, Federal University of Santa Catarina, PO Box 476, CEP, 88040-900 Florianópolis, SC, Brazil.
  • Boaventura RAR; Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
  • Dias MM; Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
  • Lopes JCB; Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
  • Vilar VJP; Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal. Electronic address: vilar@fe.up.pt.
Sci Total Environ ; 660: 982-992, 2019 Apr 10.
Article em En | MEDLINE | ID: mdl-30743982
ABSTRACT
This study focuses on the intensification of a photochemical UVC/H2O2 system using a mili-photoreactor (NETmix) for a better and faster elimination of oxytetracycline (OTC) from urban wastewater. This mili-photoreactor comprises a network of small cylindrical chambers and prismatic transport channels sealed by a UVC transparent quartz slab allowing unique properties. Since light has a profound effect on the photochemical process, UVC photons distribution over the reaction medium was investigated using a multiple UVC lamp design (4, 6 or 11 W) allocated in parallel or perpendicular to the solution movement. In addition, the effect of other operating variables, such as oxidant dosage (100-900 mg L-1), oxidant feed configuration (single entry or continuous multi-injection) and flow rate (50-100 L h-1) was studied. A kinetic model able to describe the OTC oxidation by the UVC/H2O2 photochemical system in the mili-photoreactor was also developed. Moreover, matrix effect was evaluated by spiking OTC in a secondary effluent from an urban WWTP. In this case, OTC degradation was inhibited in about 2 to 3 times due to the presence of organic/inorganic substances (soluble and particulate), inherent to the real matrix, that act as scavenger of oxidant species and as UVC light filter. The NETmix mili-photoreactor presented high photochemical space time yield (PSTY) values when compared with a conventional tubular photoreactor. This highlights the NETmix capacity to enhance UVC/H2O2 processes through an homogeneous light distribution over the entire reaction medium.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Total Environ Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Total Environ Ano de publicação: 2019 Tipo de documento: Article