Your browser doesn't support javascript.
loading
Positive or negative? The shell alters the relationship among behavioral defense strategy, energy metabolic levels and antioxidant capacity in freshwater turtles.
Zhang, Wenyi; Niu, Cuijuan; Liu, Yukun; Storey, Kenneth B.
Afiliação
  • Zhang W; 1Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875 China.
  • Niu C; 2State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102 People's Republic of China.
  • Liu Y; 1Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875 China.
  • Storey KB; 1Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875 China.
Front Zool ; 16: 3, 2019.
Article em En | MEDLINE | ID: mdl-30809267
BACKGROUND: The relationships among energy metabolic levels, behavioral and other physiological traits help to determine the trade-off of energy allocation between different traits and the evolution of life-history driven by natural selection. However, these relationships may be distinctive in selected animal taxa because of their unique traits. In the present study, the relationships among energy metabolic levels, behavioral defense strategies, and antioxidant capacity were explored in three freshwater turtle species with different shell morphologies, by assessing responses to attack, righting time, shell morphology, whole-organism metabolic rates, tissue metabolic enzyme activities and antioxidant levels. RESULTS: The Chinese three-keeled pond turtles, Chinemys reevesii, showed a passive defense strategy, relatively larger shells, a higher resting metabolic rate (RMR) and higher antioxidant levels compared to the snapping turtle, Chelydra serpentina, or the Chinese soft-shelled turtle, Pelodiscus sinensis. These latter two species both showed an active defense strategy, a higher factorial aerobic scope and better muscle anaerobic metabolic capacity but relatively smaller shells, lower RMR and antioxidant capacity. CONCLUSION: Our results indicate a negative relationship between RMR and activity levels in behavioral defense strategies along small-big shell continuum among the three turtle species. We also found a positive relationship between antioxidant capacity and energy metabolism but a negative one between antioxidant capacity and activity levels in defense strategies. The present study indicated a role of turtle shell in forming unique relationship between energy metabolic levels and behaviors in freshwater turtle taxa and a possible trade-off between the maintenance of physiological homeostasis and activity levels in energy allocation.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Front Zool Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Front Zool Ano de publicação: 2019 Tipo de documento: Article