Your browser doesn't support javascript.
loading
Predicting temporal propagation of seasonal influenza using improved gaussian process model.
Chen, Shanen; Xu, Jian; Wu, Yongsheng; Wang, Xin; Fang, Shisong; Cheng, Jinquan; Ma, Hanwu; Zhang, Renli; Liu, Yachuan; Zhang, Li; Zhang, Xi; Chen, Lili; Liu, Xiaojian.
Afiliação
  • Chen S; Department of Industrial Engineering and Management, Peking University, Beijing 100871, China.
  • Xu J; IBM Research China, Beijing 100193, China.
  • Wu Y; Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, China.
  • Wang X; Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, China.
  • Fang S; Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, China.
  • Cheng J; Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, China.
  • Ma H; Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, China.
  • Zhang R; Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, China.
  • Liu Y; Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
  • Zhang L; IBM Research China, Beijing 100193, China.
  • Zhang X; Department of Industrial Engineering and Management, Peking University, Beijing 100871, China. Electronic address: xi.zhang@coe.pku.edu.cn.
  • Chen L; IBM Research China, Beijing 100193, China. Electronic address: chenlili1002@126.com.
  • Liu X; Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, China. Electronic address: xjliu@szcdc.net.
J Biomed Inform ; 93: 103144, 2019 05.
Article em En | MEDLINE | ID: mdl-30905736
Influenza rapidly spreads in seasonal epidemics and imposes a considerable economic burden on hospitals and other healthcare costs. Thus, predicting the propagation of influenza accurately is crucial in preventing influenza outbreaks and protecting public health. Most current studies focus on the spread simulation of influenza. However, few studies have investigated the dependencies between meteorological variables and influenza activity. This study develops a non-parametric model based on Gaussian process regression for influenza prediction considering meteorological effect to capture temporal dependencies hidden in influenza time series. To identify the most explanatory external variables, L1-regularization is applied to identify meteorology factor subsets, and three types of covariance functions are designed to characterize non-stationary and periodic behavior in influenza activity. The dependencies of diseases and meteorology are modeled through the designed cross-covariance function. A real case in Shenzhen, China was studied to validate our proposed model along with comparisons to recently developed multivariate statistical models for influenza prediction. Results show that our proposed influenza prediction approach achieves superior performance in terms of one-week-ahead prediction of influenza-like illness.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Estações do Ano / Influenza Humana / Modelos Teóricos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Biomed Inform Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Estações do Ano / Influenza Humana / Modelos Teóricos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Biomed Inform Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China