Your browser doesn't support javascript.
loading
HDAC3-Mediated Repression of the Nr4a Family Contributes to Age-Related Impairments in Long-Term Memory.
Kwapis, Janine L; Alaghband, Yasaman; López, Alberto J; Long, Jeffrey M; Li, Xiang; Shu, Guanhua; Bodinayake, Kasuni K; Matheos, Dina P; Rapp, Peter R; Wood, Marcelo A.
Afiliação
  • Kwapis JL; Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, and.
  • Alaghband Y; Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, and.
  • López AJ; Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, and.
  • Long JM; Laboratory of Behavioral Neuroscience, National Institute on Aging, Biomedical Research Center, National Institutes of Health, Baltimore, Maryland 21224.
  • Li X; Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, and.
  • Shu G; Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, and.
  • Bodinayake KK; Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, and.
  • Matheos DP; Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, and.
  • Rapp PR; Laboratory of Behavioral Neuroscience, National Institute on Aging, Biomedical Research Center, National Institutes of Health, Baltimore, Maryland 21224.
  • Wood MA; Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, and mwood@uci.edu.
J Neurosci ; 39(25): 4999-5009, 2019 06 19.
Article em En | MEDLINE | ID: mdl-31000586
ABSTRACT
Aging is accompanied by cognitive deficits, including impairments in long-term memory formation. Understanding the molecular mechanisms that support preserved cognitive function in aged animals is a critical step toward identifying novel therapeutic targets that could improve memory in aging individuals. One potential mechanism is the Nr4a family of genes, a group of CREB-dependent nuclear orphan receptors that have previously been shown to be important for hippocampal memory formation. Here, using a cross-species approach, we tested the role of Nr4a1 and Nr4a2 in age-related memory impairments. Using a rat model designed to identify individual differences in age-related memory impairments, we first identified Nr4a2 as a key gene that fails to be induced by learning in cognitively impaired male aged rats. Next, using a mouse model that allows for genetic manipulations, we determined that histone deacetylase 3 (HDAC3) negatively regulates Nr4a2 in the aged male and female hippocampus. Finally, we show that overexpression of Nr4a1, Nr4a2, or both transcripts in the male mouse dorsal hippocampus can ameliorate age-related impairments in object location memory. Together, our results suggest that Nr4a2 may be a key mechanism that promotes preserved cognitive function in old age, with HDAC3-mediated repression of Nr4a2 contributing to age-related cognitive decline. More broadly, these results indicate that therapeutic strategies to promote Nr4a gene expression or function may be an effective strategy to improve cognitive function in old age.SIGNIFICANCE STATEMENT Aging is accompanied by memory impairments, although there is a great deal of variability in the severity of these impairments. Identifying molecular mechanisms that promote preserved memory or participate in cognitive reserve in old age is important to develop strategies that promote healthy cognitive aging. Here, we show that learning-induced expression of the CREB-regulated nuclear receptor gene Nr4a2 is selectively impaired in aged rats with memory impairments. Further, we show that Nr4a2 is regulated by histone deacetylase HDAC3 in the aged mouse hippocampus. Finally, we demonstrate that hippocampal overexpression of either Nr4a2 or its family member, Nr4a1, can ameliorate age-related memory impairments. This suggests that promoting Nr4a expression may be a novel strategy to improve memory in aging individuals.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Envelhecimento / Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares / Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares / Memória de Longo Prazo / Histona Desacetilases / Transtornos da Memória Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Neurosci Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Envelhecimento / Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares / Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares / Memória de Longo Prazo / Histona Desacetilases / Transtornos da Memória Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Neurosci Ano de publicação: 2019 Tipo de documento: Article