Copula-based semiparametric models for spatiotemporal data.
Biometrics
; 75(4): 1156-1167, 2019 12.
Article
em En
| MEDLINE
| ID: mdl-31009058
The joint analysis of spatial and temporal processes poses computational challenges due to the data's high dimensionality. Furthermore, such data are commonly non-Gaussian. In this paper, we introduce a copula-based spatiotemporal model for analyzing spatiotemporal data and propose a semiparametric estimator. The proposed algorithm is computationally simple, since it models the marginal distribution and the spatiotemporal dependence separately. Instead of assuming a parametric distribution, the proposed method models the marginal distributions nonparametrically and thus offers more flexibility. The method also provides a convenient way to construct both point and interval predictions at new times and locations, based on the estimated conditional quantiles. Through a simulation study and an analysis of wind speeds observed along the border between Oregon and Washington, we show that our method produces more accurate point and interval predictions for skewed data than those based on normality assumptions.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Modelos Estatísticos
/
Análise Espaço-Temporal
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
País/Região como assunto:
America do norte
Idioma:
En
Revista:
Biometrics
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
China