Your browser doesn't support javascript.
loading
Copula-based semiparametric models for spatiotemporal data.
Tang, Yanlin; Wang, Huixia J; Sun, Ying; Hering, Amanda S.
Afiliação
  • Tang Y; Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, China.
  • Wang HJ; Department of Statistics, George Washington University, Washington, D.C.
  • Sun Y; Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
  • Hering AS; Department of Statistical Science, Baylor University, Waco, Texas.
Biometrics ; 75(4): 1156-1167, 2019 12.
Article em En | MEDLINE | ID: mdl-31009058
The joint analysis of spatial and temporal processes poses computational challenges due to the data's high dimensionality. Furthermore, such data are commonly non-Gaussian. In this paper, we introduce a copula-based spatiotemporal model for analyzing spatiotemporal data and propose a semiparametric estimator. The proposed algorithm is computationally simple, since it models the marginal distribution and the spatiotemporal dependence separately. Instead of assuming a parametric distribution, the proposed method models the marginal distributions nonparametrically and thus offers more flexibility. The method also provides a convenient way to construct both point and interval predictions at new times and locations, based on the estimated conditional quantiles. Through a simulation study and an analysis of wind speeds observed along the border between Oregon and Washington, we show that our method produces more accurate point and interval predictions for skewed data than those based on normality assumptions.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Algoritmos / Modelos Estatísticos / Análise Espaço-Temporal Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: Biometrics Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Algoritmos / Modelos Estatísticos / Análise Espaço-Temporal Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: Biometrics Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China