Your browser doesn't support javascript.
loading
Morphophysiological responses of detached and adhered biofilms of Pseudomonas fluorescens to acidic electrolyzed water.
Cai, Lin-Lin; Hu, Hai-Jing; Lu, Qing; Wang, Hu-Hu; Xu, Xing-Lian; Zhou, Guang-Hong; Kang, Zhuang-Li; Ma, Han-Jun.
Afiliação
  • Cai LL; National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
  • Hu HJ; National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
  • Lu Q; National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
  • Wang HH; National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address: huuwang@njau.edu.cn.
  • Xu XL; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
  • Zhou GH; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
  • Kang ZL; School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China.
  • Ma HJ; School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China.
Food Microbiol ; 82: 89-98, 2019 Sep.
Article em En | MEDLINE | ID: mdl-31027824
Pseudomonas spp. have emerged as the main spoilage bacteria, with many strains easily forming biofilms on food-contact surfaces and causing cross-contamination. The efficacy of disinfectants against bacteria is usually tested with planktonic cells; however, the disinfection tolerance of biofilms, especially detached biofilms, remains unknown. Here, we investigated the tolerance responses of detached and adhered biofilms of Pseudomonas fluorescens to acidic electrolyzed water (AEW) by determining tolerance responses by plate counting, comparing them using a Weibull model, and verifying changes in bacterial morphology by scanning electron microscopy. The experimental data and the responses calculated using Weibull a (scale) and b (shape) parameters agreed well (R2 values: 0.974-0.999), and we found that AEW exhibited effective antimicrobial activity against P. fluorescens, with adhered biofilms were more resistant than detached biofilms and planktonic cells. Additionally, AEW increased the bacterial membrane permeability and decreased the membrane potential, intracellular ATP concentrations, and intracellular pH while also triggering the disruption of extracellular polymeric substances. These results demonstrated that the morphophysiological responses of detached and adhered biofilms differed significantly and provided information on disinfectant-resistance strategies potentially beneficial to the development of novel disinfection approaches.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Pseudomonas fluorescens / Água / Biofilmes / Desinfetantes / Eletrólise Idioma: En Revista: Food Microbiol Assunto da revista: CIENCIAS DA NUTRICAO / MICROBIOLOGIA Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Pseudomonas fluorescens / Água / Biofilmes / Desinfetantes / Eletrólise Idioma: En Revista: Food Microbiol Assunto da revista: CIENCIAS DA NUTRICAO / MICROBIOLOGIA Ano de publicação: 2019 Tipo de documento: Article