Your browser doesn't support javascript.
loading
Influenza A virus mimetic nanoparticles trigger selective cell uptake.
Maslanka Figueroa, Sara; Veser, Anika; Abstiens, Kathrin; Fleischmann, Daniel; Beck, Sebastian; Goepferich, Achim.
Afiliação
  • Maslanka Figueroa S; Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany.
  • Veser A; Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany.
  • Abstiens K; Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany.
  • Fleischmann D; Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany.
  • Beck S; Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany.
  • Goepferich A; Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany achim.goepferich@ur.de.
Proc Natl Acad Sci U S A ; 116(20): 9831-9836, 2019 05 14.
Article em En | MEDLINE | ID: mdl-31036631
ABSTRACT
Poor target cell specificity is currently a major shortcoming of nanoparticles (NPs) used for biomedical applications. It causes significant material loss to off-target sites and poor availability at the intended delivery site. To overcome this limitation, we designed particles that identify cells in a virus-like manner. As a blueprint, we chose a mechanism typical of influenza A virus particles in which ectoenzymatic hemagglutinin activation by target cells is a mandatory prerequisite for binding to a secondary target structure that finally confirms cell identity and allows for uptake of the virus. We developed NPs that probe mesangial cells for the presence of angiotensin-converting enzyme on their surface using angiotensin I (Ang-I) as a proligand. This initial interaction enzymatically transforms Ang-I to a secondary ligand angiotensin II (Ang-II) that has the potential to bind in a second stage to Ang-II type-1 receptor (AT1R). The presence of the receptor confirms the target cell identity and triggers NP uptake via endocytosis. Our virus-mimetic NPs showed outstanding target-cell affinity with picomolar avidities and were able to selectively identify these cells in the presence of 90% off-target cells that carried only the AT1R. Our results demonstrate that the design of virus-mimetic cell interactive NPs is a valuable strategy to enhance NP specificity for therapeutic and diagnostic applications. Our set of primary and secondary targets is particularly suited for the identification of mesangial cells that play a pivotal role in diabetic nephropathy, one of the leading causes of renal failure, for which currently no treatment exists.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Vírus da Influenza A / Angiotensina I / Sistemas de Liberação de Medicamentos / Células Mesangiais / Nanopartículas Tipo de estudo: Evaluation_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Vírus da Influenza A / Angiotensina I / Sistemas de Liberação de Medicamentos / Células Mesangiais / Nanopartículas Tipo de estudo: Evaluation_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha