Your browser doesn't support javascript.
loading
Model-free prostate cancer segmentation from dynamic contrast-enhanced MRI with recurrent convolutional networks: A feasibility study.
Lee, Peter Q; Guida, Alessandro; Patterson, Steve; Trappenberg, Thomas; Bowen, Chris; Beyea, Steven D; Merrimen, Jennifer; Wang, Cheng; Clarke, Sharon E.
Afiliação
  • Lee PQ; Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.
  • Guida A; Biomedical Translational Imaging Centre, Nova Scotia Health Authority and IWK Health Centre, Halifax, NS, Canada.
  • Patterson S; Nova Scotia Health Research Foundation, Halifax, NS, Canada.
  • Trappenberg T; Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.
  • Bowen C; Biomedical Translational Imaging Centre, Nova Scotia Health Authority and IWK Health Centre, Halifax, NS, Canada; Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada.
  • Beyea SD; Biomedical Translational Imaging Centre, Nova Scotia Health Authority and IWK Health Centre, Halifax, NS, Canada; Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada.
  • Merrimen J; Department of Pathology, Dalhousie University, Halifax, NS, Canada.
  • Wang C; Department of Pathology, Dalhousie University, Halifax, NS, Canada.
  • Clarke SE; Biomedical Translational Imaging Centre, Nova Scotia Health Authority and IWK Health Centre, Halifax, NS, Canada; Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS, Canada; Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada. Electronic addr
Comput Med Imaging Graph ; 75: 14-23, 2019 07.
Article em En | MEDLINE | ID: mdl-31117012
Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is a method of temporal imaging that is commonly used to aid in prostate cancer (PCa) diagnosis and staging. Typically, machine learning models designed for the segmentation and detection of PCa will use an engineered scalar image called Ktrans to summarize the information in the DCE time-series images. This work proposes a new model that amalgamates the U-net and the convGRU neural network architectures for the purpose of interpreting DCE time-series in a temporal and spatial basis for segmenting PCa in MR images. Ultimately, experiments show that the proposed model using the DCE time-series images can outperform a baseline U-net segmentation model using Ktrans. However, when other types of scalar MR images are considered by the models, no significant advantage is observed for the proposed model.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Próstata / Neoplasias da Próstata / Redes Neurais de Computação / Meios de Contraste Limite: Aged / Humans / Male / Middle aged Idioma: En Revista: Comput Med Imaging Graph Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Próstata / Neoplasias da Próstata / Redes Neurais de Computação / Meios de Contraste Limite: Aged / Humans / Male / Middle aged Idioma: En Revista: Comput Med Imaging Graph Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Canadá