Your browser doesn't support javascript.
loading
ESX Secretion-Associated Protein C From Mycobacterium tuberculosis Induces Macrophage Activation Through the Toll-Like Receptor-4/Mitogen-Activated Protein Kinase Signaling Pathway.
Guo, Qinglong; Bi, Jing; Li, Ming; Ge, Wenxue; Xu, Ying; Fan, Weixing; Wang, Honghai; Zhang, Xuelian.
Afiliação
  • Guo Q; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.
  • Bi J; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.
  • Li M; Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China.
  • Ge W; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.
  • Xu Y; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.
  • Fan W; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.
  • Wang H; Laboratory of Zoonosis, China Animal Health and Epidemiology Center, Qingdao, China.
  • Zhang X; State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.
Article em En | MEDLINE | ID: mdl-31134163
Mycobacterium tuberculosis, as a facultative intracellular pathogen, can interact with host macrophages and modulate macrophage function to influence innate and adaptive immunity. Proteins secreted by the ESX-1 secretion system are involved in this relationship. Although the importance of ESX-1 in host-pathogen interactions and virulence is well-known, the primary role is ascribed to EsxA (EAST-6) in mycobacterial pathogenesis and the functions of individual components in the interactions between pathogens and macrophages are still unclear. Here, we investigated the effects of EspC on macrophage activation. The EspC protein is encoded by an espA/C/D cluster, which is not linked to the esx-1 locus, but is essential for the secretion of the major virulence factors of ESX-1, EsxA and EsxB. Our results showed that both EspC protein and EspC overexpression in M. smegmatis induced pro-inflammatory cytokines and enhanced surface marker expression. This mechanism was dependent on Toll-like receptor 4 (TLR4), as demonstrated using EspC-treated macrophages from TLR4-/- mice, leading to decreased pro-inflammatory cytokine secretion and surface marker expression compared with those from wild-type mice. Immunoprecipitation and immunofluorescence assays showed that EspC interacted with TLR4 directly. Moreover, EspC could activate macrophages and promote antigen presentation by inducing mitogen-activated protein kinase (MAPK) phosphorylation and nuclear factor-κB activation. The EspC-induced cytokine expression, surface marker upregulation, and MAPK signaling activation were inhibited when macrophages were blocked with anti-TLR4 antibodies or pretreated with MAPK inhibitors. Furthermore, our results showed that EspC overexpression enhanced the survival of M. smegmatis within macrophages and under stress conditions. Taken together, our results indicated that EspC may be another ESX-1 virulence factor that not only modulates the host innate immune response by activating macrophages through TLR4-dependent MAPK signaling but also plays an important role in the survival of pathogenic mycobacteria in host cells.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteína C / Transdução de Sinais / Secreções Corporais / Proteínas Quinases Ativadas por Mitógeno / Receptor 4 Toll-Like / Ativação de Macrófagos / Mycobacterium tuberculosis Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Front Cell Infect Microbiol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Proteína C / Transdução de Sinais / Secreções Corporais / Proteínas Quinases Ativadas por Mitógeno / Receptor 4 Toll-Like / Ativação de Macrófagos / Mycobacterium tuberculosis Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Front Cell Infect Microbiol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China