Your browser doesn't support javascript.
loading
STEFTR: A Hybrid Versatile Method for State Estimation and Feature Extraction From the Trajectory of Animal Behavior.
Yamazaki, Shuhei J; Ohara, Kazuya; Ito, Kentaro; Kokubun, Nobuo; Kitanishi, Takuma; Takaichi, Daisuke; Yamada, Yasufumi; Ikejiri, Yosuke; Hiramatsu, Fumie; Fujita, Kosuke; Tanimoto, Yuki; Yamazoe-Umemoto, Akiko; Hashimoto, Koichi; Sato, Katsufumi; Yoda, Ken; Takahashi, Akinori; Ishikawa, Yuki; Kamikouchi, Azusa; Hiryu, Shizuko; Maekawa, Takuya; Kimura, Koutarou D.
Afiliação
  • Yamazaki SJ; Graduate School of Science, Osaka University, Toyonaka, Japan.
  • Ohara K; Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan.
  • Ito K; Graduate School of Information Science and Technology, Osaka University, Suita, Japan.
  • Kokubun N; Department of Polar Science, The Graduate University for Advanced Studies, Tachikawa, Japan.
  • Kitanishi T; Department of Polar Science, The Graduate University for Advanced Studies, Tachikawa, Japan.
  • Takaichi D; National Institute of Polar Research, Tachikawa, Japan.
  • Yamada Y; Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan.
  • Ikejiri Y; Center for Brain Science, Osaka City University Graduate School of Medicine, Osaka, Japan.
  • Hiramatsu F; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan.
  • Fujita K; Graduate School of Science, Nagoya University, Nagoya, Japan.
  • Tanimoto Y; Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
  • Yamazoe-Umemoto A; Graduate School of Science, Osaka University, Toyonaka, Japan.
  • Hashimoto K; Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan.
  • Sato K; Graduate School of Science, Osaka University, Toyonaka, Japan.
  • Yoda K; Graduate School of Science, Osaka University, Toyonaka, Japan.
  • Takahashi A; Graduate School of Science, Osaka University, Toyonaka, Japan.
  • Ishikawa Y; Graduate School of Science, Osaka University, Toyonaka, Japan.
  • Kamikouchi A; Graduate School of Information Sciences, Tohoku University, Sendai, Japan.
  • Hiryu S; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan.
  • Maekawa T; Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan.
  • Kimura KD; Department of Polar Science, The Graduate University for Advanced Studies, Tachikawa, Japan.
Front Neurosci ; 13: 626, 2019.
Article em En | MEDLINE | ID: mdl-31316332
ABSTRACT
Animal behavior is the final and integrated output of brain activity. Thus, recording and analyzing behavior is critical to understand the underlying brain function. While recording animal behavior has become easier than ever with the development of compact and inexpensive devices, detailed behavioral data analysis requires sufficient prior knowledge and/or high content data such as video images of animal postures, which makes it difficult for most of the animal behavioral data to be efficiently analyzed. Here, we report a versatile method using a hybrid supervised/unsupervised machine learning approach for behavioral state estimation and feature extraction (STEFTR) only from low-content animal trajectory data. To demonstrate the effectiveness of the proposed method, we analyzed trajectory data of worms, fruit flies, rats, and bats in the laboratories, and penguins and flying seabirds in the wild, which were recorded with various methods and span a wide range of spatiotemporal scales-from mm to 1,000 km in space and from sub-seconds to days in time. We successfully estimated several states during behavior and comprehensively extracted characteristic features from a behavioral state and/or a specific experimental condition. Physiological and genetic experiments in worms revealed that the extracted behavioral features reflected specific neural or gene activities. Thus, our method provides a versatile and unbiased way to extract behavioral features from simple trajectory data to understand brain function.
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Front Neurosci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Front Neurosci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Japão