Your browser doesn't support javascript.
loading
Comprehensive understanding of intrinsic mobility in the monolayers of III-VI group 2D materials.
Chen, Jianhui; Tan, Xiaolin; Lin, Peng; Sa, Baisheng; Zhou, Jian; Zhang, Yinggan; Wen, Cuilian; Sun, Zhimei.
Afiliação
  • Chen J; Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China. bssa@fzu.edu.cn.
Phys Chem Chem Phys ; 21(39): 21898-21907, 2019 Oct 09.
Article em En | MEDLINE | ID: mdl-31552974
ABSTRACT
Monolayers of III-VI group two-dimensional (2D) materials MX (M = Ga and In and X = S, Se, and Te) have attracted global interest for potential applications in electronic and photoelectric devices due to their attractive physical and chemical characteristics. However, a comprehensive understanding of the distinguished carrier mobility in MX monolayers is of great importance and not yet clear. Herein, using a Boltzmann transport equation (BTE) solver and first principles calculations, we have precisely revealed that the intrinsic mobility in MX monolayers is significantly limited by phonon scattering. Note that the longitudinal acoustic phonon mode and optic phonon modes and were found predominantly coupled with electrons, which strongly restrained the intrinsic mobility in the MX monolayers. Interestingly, apart from a moderate band gap, the GaSe and GaTe monolayers exhibit high electron mobility exceeding 103 cm2 V-1 s-1 and may serve as outstanding electron transport channels. We believe that our findings will shed light on the design and applications of MX monolayers and 2D materials in nanoscale electronic and photoelectric devices.

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2019 Tipo de documento: Article