Your browser doesn't support javascript.
loading
Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell-target interactions.
Vorselen, Daan; Wang, Yifan; de Jesus, Miguel M; Shah, Pavak K; Footer, Matthew J; Huse, Morgan; Cai, Wei; Theriot, Julie A.
Afiliação
  • Vorselen D; Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
  • Wang Y; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98105, USA.
  • de Jesus MM; Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Shah PK; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
  • Footer MJ; Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA.
  • Huse M; Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
  • Cai W; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98105, USA.
  • Theriot JA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
Nat Commun ; 11(1): 20, 2020 01 07.
Article em En | MEDLINE | ID: mdl-31911639
Force exertion is an integral part of cellular behavior. Traction force microscopy (TFM) has been instrumental for studying such forces, providing spatial force measurements at subcellular resolution. However, the applications of classical TFM are restricted by the typical planar geometry. Here, we develop a particle-based force sensing strategy for studying cellular interactions. We establish a straightforward batch approach for synthesizing uniform, deformable and tuneable hydrogel particles, which can also be easily derivatized. The 3D shape of such particles can be resolved with superresolution (<50 nm) accuracy using conventional confocal microscopy. We introduce a reference-free computational method allowing inference of traction forces with high sensitivity directly from the particle shape. We illustrate the potential of this approach by revealing subcellular force patterns throughout phagocytic engulfment and force dynamics in the cytotoxic T-cell immunological synapse. This strategy can readily be adapted for studying cellular forces in a wide range of applications.
Assuntos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Linfócitos T Citotóxicos / Comunicação Celular Limite: Animals Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Linfócitos T Citotóxicos / Comunicação Celular Limite: Animals Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos