Your browser doesn't support javascript.
loading
Role of the GLUT1 Glucose Transporter in Postnatal CNS Angiogenesis and Blood-Brain Barrier Integrity.
Veys, Koen; Fan, Zheng; Ghobrial, Moheb; Bouché, Ann; García-Caballero, Melissa; Vriens, Kim; Conchinha, Nadine Vasconcelos; Seuwen, Aline; Schlegel, Felix; Gorski, Tatiane; Crabbé, Melissa; Gilardoni, Paola; Ardicoglu, Raphaela; Schaffenrath, Johanna; Casteels, Cindy; De Smet, Gino; Smolders, Ilse; Van Laere, Koen; Abel, E Dale; Fendt, Sarah-Maria; Schroeter, Aileen; Kalucka, Joanna; Cantelmo, Anna Rita; Wälchli, Thomas; Keller, Annika; Carmeliet, Peter; De Bock, Katrien.
Afiliação
  • Veys K; From the Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology (K. Veys, A.B., M.G.-C., N.V.C., J.K., A.R.C., P.C.), KU Leuven.
  • Fan Z; Laboratory of Angiogenesis and Vascular Metabolism (K. Veys, A.B., M.G.-C., N.V.C., J.K., A.R.C., P.C.), Center for Cancer Biology, VIB, Leuven.
  • Ghobrial M; Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETHZ) Zurich (Z.F., M.G., T.G., P.G., R.A., K.D.B.).
  • Bouché A; Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETHZ) Zurich (Z.F., M.G., T.G., P.G., R.A., K.D.B.).
  • García-Caballero M; Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich (UZH) and ETHZ and Division of Neurosurgery, USZ, Zurich (M.G., T.W.).
  • Vriens K; From the Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology (K. Veys, A.B., M.G.-C., N.V.C., J.K., A.R.C., P.C.), KU Leuven.
  • Conchinha NV; Laboratory of Angiogenesis and Vascular Metabolism (K. Veys, A.B., M.G.-C., N.V.C., J.K., A.R.C., P.C.), Center for Cancer Biology, VIB, Leuven.
  • Seuwen A; From the Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology (K. Veys, A.B., M.G.-C., N.V.C., J.K., A.R.C., P.C.), KU Leuven.
  • Schlegel F; Laboratory of Angiogenesis and Vascular Metabolism (K. Veys, A.B., M.G.-C., N.V.C., J.K., A.R.C., P.C.), Center for Cancer Biology, VIB, Leuven.
  • Gorski T; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology (K. Vriens, S.-M.F.), KU Leuven.
  • Crabbé M; Laboratory of Cellular Metabolism and Metabolic Regulation (K. Vriens, S.-M.F.), Center for Cancer Biology, VIB, Leuven.
  • Gilardoni P; From the Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology (K. Veys, A.B., M.G.-C., N.V.C., J.K., A.R.C., P.C.), KU Leuven.
  • Ardicoglu R; Laboratory of Angiogenesis and Vascular Metabolism (K. Veys, A.B., M.G.-C., N.V.C., J.K., A.R.C., P.C.), Center for Cancer Biology, VIB, Leuven.
  • Schaffenrath J; Institute for Biomedical Engineering (A. Seuwen, F.S., A. Schroeter), UZH/ETHZ, Zurich, Switzerland.
  • Casteels C; Institute of Pharmacology and Toxicology, UZH, Zurich, Switzerland (A. Seuwen, F.S., A. Schroeter).
  • De Smet G; Institute for Biomedical Engineering (A. Seuwen, F.S., A. Schroeter), UZH/ETHZ, Zurich, Switzerland.
  • Smolders I; Institute of Pharmacology and Toxicology, UZH, Zurich, Switzerland (A. Seuwen, F.S., A. Schroeter).
  • Van Laere K; Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETHZ) Zurich (Z.F., M.G., T.G., P.G., R.A., K.D.B.).
  • Abel ED; Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Belgium (M.C., C.C., K.V.L.).
  • Fendt SM; Molecular Small Animal Imaging Centre, KU Leuven (M.C., C.C., K.V.L.).
  • Schroeter A; Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETHZ) Zurich (Z.F., M.G., T.G., P.G., R.A., K.D.B.).
  • Kalucka J; Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETHZ) Zurich (Z.F., M.G., T.G., P.G., R.A., K.D.B.).
  • Cantelmo AR; Neuroscience Center Zurich (J.S., A.K.), UZH/ETHZ, Zurich, Switzerland.
  • Wälchli T; Department of Neurosurgery, Clinical Neurocentre, USZ, Zurich (J.S., A.K.).
  • Keller A; Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Belgium (M.C., C.C., K.V.L.).
  • Carmeliet P; Molecular Small Animal Imaging Centre, KU Leuven (M.C., C.C., K.V.L.).
  • De Bock K; Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel (G.D.S., I.S.).
Circ Res ; 127(4): 466-482, 2020 07 31.
Article em En | MEDLINE | ID: mdl-32404031
ABSTRACT
RATIONALE Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/Slc2a1) is highly expressed in ECs of the central nervous system (CNS) and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood.

OBJECTIVE:

We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. METHODS AND

RESULTS:

Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets.

CONCLUSIONS:

GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Vasos Retinianos / Encéfalo / Barreira Hematoencefálica / Neovascularização Fisiológica / Células Endoteliais / Transportador de Glucose Tipo 1 Limite: Animals / Humans Idioma: En Revista: Circ Res Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Vasos Retinianos / Encéfalo / Barreira Hematoencefálica / Neovascularização Fisiológica / Células Endoteliais / Transportador de Glucose Tipo 1 Limite: Animals / Humans Idioma: En Revista: Circ Res Ano de publicação: 2020 Tipo de documento: Article