Your browser doesn't support javascript.
loading
The novel coronavirus SARS-CoV-2: From a zoonotic infection to coronavirus disease 2019.
Dos Santos Bezerra, Rafael; Valença, Ian N; de Cassia Ruy, Patrícia; Ximenez, João P B; da Silva Junior, Wilson A; Covas, Dimas T; Kashima, Simone; Slavov, Svetoslav N.
Afiliação
  • Dos Santos Bezerra R; Pós-Graduation Program in Clinical Oncology, Stem Cells and Cell Therapy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Valença IN; Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • de Cassia Ruy P; Pós-Graduation Program in Clinical Oncology, Stem Cells and Cell Therapy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Ximenez JPB; Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • da Silva Junior WA; Center for Medical Genomics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Covas DT; Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Kashima S; Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
  • Slavov SN; Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
J Med Virol ; 92(11): 2607-2615, 2020 11.
Article em En | MEDLINE | ID: mdl-32470173
The novel coronavirus (CoV), severe acute respiratory syndrome (SARS)-CoV-2 is an international public health emergency. Until now, the intermediate host and mechanisms of the interspecies jump of this virus are unknown. Phylogenetic analysis of all available bat CoV complete genomes was performed to analyze the relationships between bat CoV and SARS-CoV-2. To suggest a possible intermediate host, another phylogenetic reconstruction of CoV genomes obtained from animals that were hypothetically commercialized in the Chinese markets was also carried out. Moreover, mutation analysis was executed to suggest genomic regions that may have permitted the adaptation of SARS-CoV-2 to the human host. The phylogenetic analysis demonstrated that SARS-CoV-2 formed a cluster with the bat CoV isolate RaTG13. Possible CoV interspecies jumps among bat isolates were also observed. The phylogenetic tree reconstructed from CoV strains belonging to different animals demonstrated that SARS-CoV-2, bat RaTG13, and pangolin CoV genomes formed a monophyletic cluster, demonstrating that pangolins may be suggested as SARS-CoV-2 intermediate hosts. Three AA substitutions localized in the S1 portion of the S gene were observed, some of which have been correlated to structural modifications of the S protein which may facilitate SARS-CoV-2 tropism to human cells. Our analysis shows the tight relationship between SARS-CoV-2 and bat SARS-like strains. It also hypothesizes that pangolins might have been possible intermediate hosts of the infection. Some of the observed AA substitutions in the S-binding protein may serve as possible adaptation mutations in humans but more studies are needed to elucidate their function.
Assuntos
Palavras-chave

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Filogenia / Zoonoses / Quirópteros / Genoma Viral / SARS-CoV-2 / COVID-19 Limite: Animals / Humans Idioma: En Revista: J Med Virol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Bases de dados: MEDLINE Assunto principal: Filogenia / Zoonoses / Quirópteros / Genoma Viral / SARS-CoV-2 / COVID-19 Limite: Animals / Humans Idioma: En Revista: J Med Virol Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil