α-Cyperone inhibits the proliferation of human cervical cancer HeLa cells via ROS-mediated PI3K/Akt/mTOR signaling pathway.
Eur J Pharmacol
; 883: 173355, 2020 Sep 15.
Article
em En
| MEDLINE
| ID: mdl-32687921
Cervical cancer is the fourth leading killer of female cancer patients worldwide. Each year more than half a million women are diagnosed with cervical cancer and the disease results in over 300, 000 deaths. α-Cyperone is known as the principal active ingredient in the Cyperus rotundus (Family: Cyperaceae). However, the effects of α-Cyperone on cancers, especially on cervical cancer, are yet to be explored. In the present study, the underlying mechanism of the anti-tumor activity of α-Cyperone against HeLa cells was investigated. The results showed that α-Cyperone inhibited proliferation and induced apoptosis in HeLa cells. Mechanistically, α-Cyperone promoted HeLa cells apoptosis via a mitochondrial apoptotic pathway, which was proved by increased level of intracellular reactive oxygen species (ROS) and upregulated expression of cytochrome c, cleaved caspase-3, PARP, and Bax. Further RNA-sequencing revealed α-Cyperone inhibited the activation of PI3K/Akt/mTOR signaling pathway in HeLa cells, which confirmed by PI3K inhibitor and agonist. The PI3K inhibitor (LY294002) synergized with α-Cyperone in arresting the growth of HeLa cells, whereas the PI3K agonist (IGF-1) abrogated such an effect. Interestingly, the expression of PD-L1 was attenuated by both α-Cyperone and LY294002, while the supplement of IGF-1 rescued the low expression of PD-L1. In conclusion, our results reveal that the inhibitory effect of α-Cyperone on HeLa cell growth is triggered via the ROS-mediated PI3K/Akt/mTOR signaling pathway and closely related to a decline in the PD-L1 expression.
Palavras-chave
Texto completo:
1
Bases de dados:
MEDLINE
Assunto principal:
Neoplasias do Colo do Útero
/
Espécies Reativas de Oxigênio
/
Proliferação de Células
/
Proteínas Proto-Oncogênicas c-akt
/
Fosfatidilinositol 3-Quinase
/
Serina-Treonina Quinases TOR
/
Naftalenos
/
Antineoplásicos Fitogênicos
Limite:
Female
/
Humans
Idioma:
En
Revista:
Eur J Pharmacol
Ano de publicação:
2020
Tipo de documento:
Article